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ABSTRACT 

The 3D-DWT is a mathematical tool of increasing 
importance. However, the huge memory requirement of the 
algorithms that compute it is one of the main drawbacks in 
practical implementations. In this paper, we introduce a 
frame-by-frame algorithm to calculate the 3D-DWT with 
low memory usage. This algorithm is general, in the sense 
that it can be employed with any wavelet transform and, 
contrary to other proposals, it gets the same results as the 
regular wavelet transform. In addition, there is no need to 
divide the input video sequence into group of frames, and it 
can be applied in a continuous manner, so that coding 
efficiency is increased and no blocking artifacts appear. 
 
Index Terms— 3D-DWT, wavelet-based video coding

1. INTRODUCTION 
 
In the recent years, the three-dimensional wavelet transform 
(3D-DWT) has focused the attention of the research 
community, most of all in areas such as video watermarking 
[1] and 3D coding (e.g., compression of volumetric data [2] 
or multispectral images [3], 3D model coding [4], and 
especially, video coding).  

In video compression, some early proposals were based 
on merely applying the wavelet transform on the time axis 
after computing the 2D-DWT for each frame [5]. Then, an 
adapted version of an image encoder can be used, taking 
into account the new dimension. For instance, instead of the 
typical quad-trees of image coding, a tree with eight 
descendants per coefficient is used in [5] to extend SPIHT 
[6], the well-known image encoder, to video coding. 
However, the coding efficiency of these video encoders is 
poor in moderate-to-high motion sequences due to the 
appearance of misaligned objects in the time direction, 
causing an energy increase in high-frequency subbands, and 
thereby preventing energy concentration in low-frequency 
subbands. A more efficient strategy for video coding with 
time filtering is Motion Compensated Temporal Filtering 
(MCTF) [7] [8]. In these techniques, in order to compensate 
the object (or pixel) misalignment between frames, and 
hence to avoid the significant amount of energy that appears 
in high-frequency subbands, a motion compensation 
algorithm is introduced to align all the objects (or pixels) in 
the frames before being temporal filtered. 

In all these applications, the first problem that arises is 
the extremely high memory consumption of the 3D wavelet 
transform if the regular algorithm is used, since a group of 
frames must be kept in memory before applying temporal 
filtering, and in the case of video coding, we know that the 
greater temporal decorrelation, the more number of frames 
are needed in memory. Another drawback is the need to 
group images in small Group of Pictures (GOPs) to prevent 
very high memory usage, because the 3D-DWT must be 
computed along a set of images which are held in memory. 
This division of the video sequence in GOPs containing 
only a few images hinders the decorrelation of the temporal 
dimension and causes boundary effects between GOPs. 

Even though several proposals have been made to avoid 
the aforementioned problems, most of them are not general 
(for any wavelet transform) and/or complete (the wavelet 
coefficients are not the same as those from the usual dyadic 
wavelet transform). In addition, a software implementation 
is not always easy. In this paper, we extend to video the 
line-based approach introduced in [9] to compute the 2D-
DWT. This approach is general so any wavelet transform 
can be computed. To ease a software implementation, we 
use the same recursive strategy as in [10]. 

 
2. THREE-DIMENSIONAL DWT ALGORITHMS 

 
In the regular 3D-DWT, the wavelet transform is applied in 
the three directions, i.e., in the spatial directions (horizontal 
and vertical) and in the time direction (which is known as 
temporal filtering), resulting in eight first level wavelet 
subbands (typically named as LLL1, LHL1, LLH1, LHH1, 
HLL1, HHL1, HLH1, HHH1). Afterwards, the same 
decomposition can be done, focusing on the low-frequency 
subband (LLL1), achieving in this way a second-level 
wavelet decomposition, and so on (see example in Fig 1(b)). 

Because this algorithm is clearly memory-intensive, 
with very high memory requirements, and exhibits high 
coding delay (the whole 3D-DWT needs to be computed 
before starting the coding stage) several alternative 
proposals have been made.  

Some of these alternatives are based on modifying the 
order in which the temporal filtering is calculated. E.g., in 
[11] the authors propose to compute the wavelet transform 
in the time direction with only a few frames; then the 
resulting high-frequency frames are released as a part of the 
final result, and the low-frequency frames are employed 
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along with a few more frames so as to continue to compute 
the wavelet transform in the time direction. A similar 
example is [12], where the temporal decomposition is done 
by interleaving frames in small groups, getting a low-
frequency frame per group, which is stored to be 
decomposed later with the low-frequency frames from the 
rest of groups. Although both algorithms ([11] and [12]) 
require less memory, the resulting coefficients are far from 
being the same as in the regular algorithm. 

Other proposals rely on blocking algorithms [13], in 
which the transform is computed in working subsets to 
reduce memory usage and exploit data locality. Despite the 
use of overlapping techniques to avoid typical blocking 
artifacts, the coding efficiency decreases because the 
redundancy among neighboring blocks is not exploited. 

In MCTF [7] [8], the temporal decomposition is usually 
carried out with a very simple transform based on the lifting 
scheme [14]. When using filters with only a prediction and 
an update step (or even sometimes the update step is 
skipped), only a few frames need to be handled in MCTF. 
However, if longer filters with several decomposition levels 
are applied in the temporal dimension, memory handling 
becomes difficult. 

 
3. FRAME-BY-FRAME 3D-DWT 

In this section, we propose to extend the line-based 
approach [9], which computes the 2D-DWT with reduced 
memory consumption, to a three-dimensional wavelet 
transform. In the new approach, frames are continuously 
input with no need to divide the video sequence into GOPs. 
Moreover, the algorithm yields slices of wavelet subbands 
(which we call subband frames) as soon as it has enough 
frames to compute them. This approach works as follows. 

For the first decomposition level, the algorithm directly 
receives frames, one by one. On every input frame, a one-
level 2D-DWT is applied. Then, this transformed image is 
stored in a buffer associated to the first decomposition level. 

This buffer must be able to keep 2N+1 frames, where 2N+1 
is the number of taps for the largest analysis filter bank. We 
only consider odd filter lengths because they have higher 
compression efficiency, however this analysis could be 
extended to even filters as well. 

When there are enough frames in the buffer to perform 
one step of a wavelet transform in the temporal direction (z-
axis), the convolution process is calculated twice, first using 
the low-pass filter and then the high-pass filter. The result of 
this operation is the first frame of each high-frequency 
subband (the HHL1, HLH1, HHH1, HLL1, LHL1, LLH1 and 
LHH1 wavelet subbands), and the first frame of the LLL1 
subband. At this moment, for a dyadic wavelet 
decomposition, we can process and release the first frame of 
the wavelet subbands. However, the first frame of the LLL1 
subband does not belong to the final result, but it is needed 
as incoming data for the following decomposition level. On 
the other hand, once the frames in the first level buffer have 
been used, this buffer is shifted twice (using a rotation 
operation) so that two frames are discarded while another 
two frames are input at the other end. Once the buffer is 
updated, the process can be repeated and more subband 
frames are obtained. 

At the second level, its buffer is filled with the LLL1 
frames that have been computed in the first level. Once the 
buffer is completely filled, it is processed in the very same 
way as we have described for the first level. In this manner, 
the frames of the second level wavelet subbands are 
achieved, and the low-frequency frames from LLL2 are 
passed to the third level. As it is depicted in Figure 1(a), this 
process can be repeated until the desired decomposition 
level (nlevel) is reached. 

In this algorithm, a major problem arises when it is 
implemented. This drawback is the synchronization among 
buffers. Before a buffer can produce frames, it must be 
completely filled with frames from previous buffers, 
therefore they start working at different moments, i.e., they 

Fig. 1: Overview of the 3D DWT computation in a two-level decomposition, (a) following a 
frame-by-frame scheme as shown in Algorithm 1 or (b) the regular 3D DWT algorithm. 
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have different delays. Moreover, all the buffers exchange 
their result at different intervals, according to their level.  

Handling several buffers with different delay and 
rhythm becomes a hard task. The next section proposes a 
recursive algorithm that clearly specifies how to perform 
this communication between buffers. 
 

4. A RECURSIVE IMPLEMENTATION OF THE 
FRAME-BY-FRAME 3D-DWT 

 
In this section, we present an algorithm based on [10] that 
automatically solves the synchronization problem among 
levels that has been addressed in the previous section. To 
solve this problem, this algorithm defines a recursive 
function that obtains the next low-frequency subband frame 
(LLL) from a contiguous level. 

The algorithm starts requesting LLL frames to the last 
level (nlevel). As seen in Figure 1, the nlevel buffer must be 
filled with subband frames from the nlevel 1 level before it 
can generate frames. In order to get them, this function 
recursively call itself until the level 0 is reached. At this 

point, it no longer needs to call itself since it can return a 
frame from the video sequence, which can be directly read 
from the input/output system. 

The complete recursive algorithm is formally described 
in the frame entitled Algorithm 1.1, while Algorithm 1.2 sets 
up the variables and performs the DWT by calling the 
recursive algorithm. Let us see the first algorithm. 

The first time that the recursive function is called at 
every level, it has its buffer ( levelbuffer ) empty. Then, its 
upper half (from N to 2N) is recursively filled with frames 
from the previous level. Recall that once a frame is 
received, it must be transformed using a 2D DWT before 
being stored. Once the upper half is full, the lower half is 
filled by using symmetric extension (the N+1 frame is 
copied into the N-1 position,…, the 2N is copied into the 0). 
On the other hand, if the buffer is not empty, it simply has 
to be updated. In order to update it, it is shifted one position 
so that the frame contained in the first position is discarded 
and a new frame can be introduced in the last position (2N) 
by using a recursive call. This operation is repeated twice. 

However, if there are no more frames in the previous 
level, this recursive call will return End Of Frame (EOF). 
That points out that we are about to finish the computation 
at this level, but we still need to continue filling the buffer. 
We fill it by using symmetric extension again. 

Once the buffer is filled or updated, both high-pass and 
low-pass filter banks are applied to the frames in the buffer. 
As a result of the convolution, we get a frame of every 
wavelet subband at this level, and an LLL frame. The high-
frequency coefficients are processed according to the 
application (compressed, saved to secondary storage, etc.) 
and this function returns the LLL frame. 

Every recursive function needs at least one base case to 
stop backtracking. This function has two base cases. The 
first case is when all the frames at this level have been read. 
It is detected by keeping an account of the number of frames 
read and the maximum number of frames that can be read at 
every level. In this case, the function returns EOF. An 
alternative when the number of frames in the sequence is 
unknown a priori is propagating the EOF label. The second 
base case is reached when level gets 0 and then no further 
recursive call is need since a frame can be directly read 
from the input video sequence. 

The inverse DWT algorithm is similar to the forward 
DWT, but applied in reverse order. An important difference 
between this proposal and those based on GOPs is how the 

function GetLLFrame ( level ) 
1) First base case: No more frames to read at this level 

if levellevel MaxFramesFramesRead  
return EOF 

2) Second base case: The current level belongs to the space 
domain and not to the wavelet domain  

else if 0level  
return InputFrame( )  

else  
3) Recursive case  
3.1) Recursively fill or update the buffer for this level 

if levelbuffer  is empty 
for NNi 2   

)(ibufferlevel 2DFWT(GetLLframe ( level 1)) 
FullSymmetricExtension( levelbuffer  ) 

else  
repeat twice

Shift( levelbuffer  ) 
frame = GetLLframe ( level 1 ) 
if  frame = EOF

)2( Nbufferlevel SymmetricExt( levelbuffer ) 
else 

)2( Nbufferlevel 2DFWT( frame ) 

3.2) Calculate the WT for the time direction from the frames in 

buffer, then process the resulting high frequency subband frames

LHHLHLLLHLLL ,,, = Z-axis_FWT_LowPass( levelbuffer  )

HHHHHLHLHHLL ,,, = Z-axis_FWT_HighPass( levelbuffer  )

ProcessSubFrames( HHHHHLHLHHLLLHHLHLLLH ,,,,,,  )

set 1levellevel FramesReadFramesRead  

return LLL

end of fuction 
Algorithm 1.1: Recursive function 

function LowMemUsage3D_FWT( nlevel ) 
set nlevellevelFramesRead level 0  

set nlevellevelNframesFrameLines levellevel 2
 

set nlevellevelemptybuffer level  
repeat  

LLL = GetLLframe( nlevel ) 
if (LLL!=EOF) ProcessLowFreqSubFrame( LLL ) 

until LLL=EOF
end of function

Algorithm 1.2: Perform the 3DFWT  by calling Algorithm 1.1
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video can be decoded from the middle of the bitstream, that 
is, if the user begins to receive the video broadcast while it 
is already in progress. In the regular algorithm, the current 
group of frames being received is ignored, and then, the 
following group is stored in memory. After it has been 
entirely received, it can be decoded, and the 3D-IWT can be 
applied. On the other hand, for the inverse transform in the 
frame-by-frame scheme, the decoding process begins 
immediately by filling up the highest-level buffer (nlevel) 
with the information received from the bitstream. During 
this process, other information from the bitstream is 
ignored. Afterwards, once this buffer is full, we begin to 
accept also information from the previous level, and so 
forth, until all the buffers are full. At that moment, the video 
can be sequentially decoded as usual. The latency of this 
process is determinist and depends on the filter length and 
the number of decomposition levels (the higher they are, the 
higher latency). However, for the regular 3D algorithm, the 
latency depends on the remaining number of frames in the 
current group when the process begins, and the GOP size. 

A drawback that has not been considered yet is the need 
to reverse the order of the subbands, from the forward DWT 
to the inverse one. This problem can be solved by using 
some buffers at both ends, so that data are supplied in the 
right order [9]. Other simpler solutions are: to save every 
level in secondary storage separately so that it can be read in 
a different order and, if the WT is used for compression, to 
keep the compressed bitstream in memory. 
 

5. MEMORY CONSUMPTION COMPARISON 
 

In this new algorithm, at every level, each buffer must be 
able to keep either 2N+1 low frequency frames (recall that 
2N+1 is the filter length), or even less if the lifting scheme 
is used as shown in [10]. As presented in Figure 1(a), each 
buffer at a level i needs a quarter of coefficients if compared 
with the previous level (i 1). Therefore, for a frame size of 
(w×h) and an nlevel time decomposition, the number of 
coefficients required by this algorithm is: 

14)()12(4)()12()()12( nlevelhwNhwNhwN  
which is asymptotically (as nlevel approaches infinity) 

3
4)()12(

4
)()12(

0
hwNhwN

n
n

 

independently of the number of frames to be encoded, less 
than the regular case, which needs (w×h×G), being G the 
number of frames in a GOP. For instance, in a C 
implementation, a 3D-DWT of  a CIF sequence (with B5/3 
and three decomposition levels) has required 2.5 MB with 
our new proposal, while the regular algorithm with 32 
frames/GOP needs 12.4 MB, and introduces discontinuities 
in the transform, being less efficient for coding purposes. 
 

6. CONCLUSIONS 
 
A frame-by-frame transform algorithm has been presented, 
considering the existing problems about different delay and 
rhythm among the buffers. The new algorithm reduces the 
memory requirements compared with the regular one, 
computing exactly the same coefficients. In addition, there 

is no need to artificially divide the video sequence in 
constant-size group of pictures. As future work, a motion 
estimation stage will be included to align video motion, 
improving coding efficiency by approaching a t+2D 
scheme. 
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