
A GENERAL FRAME-BY-FRAME WAVELET TRANSFORM ALGORITHM
FOR A THREE-DIMENSIONAL ANALYSIS WITH REDUCED MEMORY USAGE

Jose Olivera, Otoniel Lópezb, Miguel Martínez-Rachb, and Manuel P. Malumbresb

aTechnical University of Valencia, Camino de Vera sn, 46022 Valencia, Spain

bMiguel Hernández University, Avda. Universidad s/n, 03202 Elche, Spain

ABSTRACT

The 3D-DWT is a mathematical tool of increasing
importance. However, the huge memory requirement of the
algorithms that compute it is one of the main drawbacks in
practical implementations. In this paper, we introduce a
frame-by-frame algorithm to calculate the 3D-DWT with
low memory usage. This algorithm is general, in the sense
that it can be employed with any wavelet transform and,
contrary to other proposals, it gets the same results as the
regular wavelet transform. In addition, there is no need to
divide the input video sequence into group of frames, and it
can be applied in a continuous manner, so that coding
efficiency is increased and no blocking artifacts appear.

Index Terms— 3D-DWT, wavelet-based video coding

1. INTRODUCTION

In the recent years, the three-dimensional wavelet transform
(3D-DWT) has focused the attention of the research
community, most of all in areas such as video watermarking
[1] and 3D coding (e.g., compression of volumetric data [2]
or multispectral images [3], 3D model coding [4], and
especially, video coding).

In video compression, some early proposals were based
on merely applying the wavelet transform on the time axis
after computing the 2D-DWT for each frame [5]. Then, an
adapted version of an image encoder can be used, taking
into account the new dimension. For instance, instead of the
typical quad-trees of image coding, a tree with eight
descendants per coefficient is used in [5] to extend SPIHT
[6], the well-known image encoder, to video coding.
However, the coding efficiency of these video encoders is
poor in moderate-to-high motion sequences due to the
appearance of misaligned objects in the time direction,
causing an energy increase in high-frequency subbands, and
thereby preventing energy concentration in low-frequency
subbands. A more efficient strategy for video coding with
time filtering is Motion Compensated Temporal Filtering
(MCTF) [7] [8]. In these techniques, in order to compensate
the object (or pixel) misalignment between frames, and
hence to avoid the significant amount of energy that appears
in high-frequency subbands, a motion compensation
algorithm is introduced to align all the objects (or pixels) in
the frames before being temporal filtered.

In all these applications, the first problem that arises is
the extremely high memory consumption of the 3D wavelet
transform if the regular algorithm is used, since a group of
frames must be kept in memory before applying temporal
filtering, and in the case of video coding, we know that the
greater temporal decorrelation, the more number of frames
are needed in memory. Another drawback is the need to
group images in small Group of Pictures (GOPs) to prevent
very high memory usage, because the 3D-DWT must be
computed along a set of images which are held in memory.
This division of the video sequence in GOPs containing
only a few images hinders the decorrelation of the temporal
dimension and causes boundary effects between GOPs.

Even though several proposals have been made to avoid
the aforementioned problems, most of them are not general
(for any wavelet transform) and/or complete (the wavelet
coefficients are not the same as those from the usual dyadic
wavelet transform). In addition, a software implementation
is not always easy. In this paper, we extend to video the
line-based approach introduced in [9] to compute the 2D-
DWT. This approach is general so any wavelet transform
can be computed. To ease a software implementation, we
use the same recursive strategy as in [10].

2. THREE-DIMENSIONAL DWT ALGORITHMS

In the regular 3D-DWT, the wavelet transform is applied in
the three directions, i.e., in the spatial directions (horizontal
and vertical) and in the time direction (which is known as
temporal filtering), resulting in eight first level wavelet
subbands (typically named as LLL1, LHL1, LLH1, LHH1,
HLL1, HHL1, HLH1, HHH1). Afterwards, the same
decomposition can be done, focusing on the low-frequency
subband (LLL1), achieving in this way a second-level
wavelet decomposition, and so on (see example in Fig 1(b)).

Because this algorithm is clearly memory-intensive,
with very high memory requirements, and exhibits high
coding delay (the whole 3D-DWT needs to be computed
before starting the coding stage) several alternative
proposals have been made.

Some of these alternatives are based on modifying the
order in which the temporal filtering is calculated. E.g., in
[11] the authors propose to compute the wavelet transform
in the time direction with only a few frames; then the
resulting high-frequency frames are released as a part of the
final result, and the low-frequency frames are employed

I - 4691-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

along with a few more frames so as to continue to compute
the wavelet transform in the time direction. A similar
example is [12], where the temporal decomposition is done
by interleaving frames in small groups, getting a low-
frequency frame per group, which is stored to be
decomposed later with the low-frequency frames from the
rest of groups. Although both algorithms ([11] and [12])
require less memory, the resulting coefficients are far from
being the same as in the regular algorithm.

Other proposals rely on blocking algorithms [13], in
which the transform is computed in working subsets to
reduce memory usage and exploit data locality. Despite the
use of overlapping techniques to avoid typical blocking
artifacts, the coding efficiency decreases because the
redundancy among neighboring blocks is not exploited.

In MCTF [7] [8], the temporal decomposition is usually
carried out with a very simple transform based on the lifting
scheme [14]. When using filters with only a prediction and
an update step (or even sometimes the update step is
skipped), only a few frames need to be handled in MCTF.
However, if longer filters with several decomposition levels
are applied in the temporal dimension, memory handling
becomes difficult.

3. FRAME-BY-FRAME 3D-DWT

In this section, we propose to extend the line-based
approach [9], which computes the 2D-DWT with reduced
memory consumption, to a three-dimensional wavelet
transform. In the new approach, frames are continuously
input with no need to divide the video sequence into GOPs.
Moreover, the algorithm yields slices of wavelet subbands
(which we call subband frames) as soon as it has enough
frames to compute them. This approach works as follows.

For the first decomposition level, the algorithm directly
receives frames, one by one. On every input frame, a one-
level 2D-DWT is applied. Then, this transformed image is
stored in a buffer associated to the first decomposition level.

This buffer must be able to keep 2N+1 frames, where 2N+1
is the number of taps for the largest analysis filter bank. We
only consider odd filter lengths because they have higher
compression efficiency, however this analysis could be
extended to even filters as well.

When there are enough frames in the buffer to perform
one step of a wavelet transform in the temporal direction (z-
axis), the convolution process is calculated twice, first using
the low-pass filter and then the high-pass filter. The result of
this operation is the first frame of each high-frequency
subband (the HHL1, HLH1, HHH1, HLL1, LHL1, LLH1 and
LHH1 wavelet subbands), and the first frame of the LLL1
subband. At this moment, for a dyadic wavelet
decomposition, we can process and release the first frame of
the wavelet subbands. However, the first frame of the LLL1
subband does not belong to the final result, but it is needed
as incoming data for the following decomposition level. On
the other hand, once the frames in the first level buffer have
been used, this buffer is shifted twice (using a rotation
operation) so that two frames are discarded while another
two frames are input at the other end. Once the buffer is
updated, the process can be repeated and more subband
frames are obtained.

At the second level, its buffer is filled with the LLL1
frames that have been computed in the first level. Once the
buffer is completely filled, it is processed in the very same
way as we have described for the first level. In this manner,
the frames of the second level wavelet subbands are
achieved, and the low-frequency frames from LLL2 are
passed to the third level. As it is depicted in Figure 1(a), this
process can be repeated until the desired decomposition
level (nlevel) is reached.

In this algorithm, a major problem arises when it is
implemented. This drawback is the synchronization among
buffers. Before a buffer can produce frames, it must be
completely filled with frames from previous buffers,
therefore they start working at different moments, i.e., they

Fig. 1: Overview of the 3D DWT computation in a two-level decomposition, (a) following a
frame-by-frame scheme as shown in Algorithm 1 or (b) the regular 3D DWT algorithm.

LLL1

LLH1, LHL1, LHH1, HLL1,
HLH1, HHL1, HHH1,

LLL2

LLH2, LHL2,
LHH2, HLL2,
HLH2, HHL2,
HHH2

(a) (b)

I - 470

have different delays. Moreover, all the buffers exchange
their result at different intervals, according to their level.

Handling several buffers with different delay and
rhythm becomes a hard task. The next section proposes a
recursive algorithm that clearly specifies how to perform
this communication between buffers.

4. A RECURSIVE IMPLEMENTATION OF THE
FRAME-BY-FRAME 3D-DWT

In this section, we present an algorithm based on [10] that
automatically solves the synchronization problem among
levels that has been addressed in the previous section. To
solve this problem, this algorithm defines a recursive
function that obtains the next low-frequency subband frame
(LLL) from a contiguous level.

The algorithm starts requesting LLL frames to the last
level (nlevel). As seen in Figure 1, the nlevel buffer must be
filled with subband frames from the nlevel 1 level before it
can generate frames. In order to get them, this function
recursively call itself until the level 0 is reached. At this

point, it no longer needs to call itself since it can return a
frame from the video sequence, which can be directly read
from the input/output system.

The complete recursive algorithm is formally described
in the frame entitled Algorithm 1.1, while Algorithm 1.2 sets
up the variables and performs the DWT by calling the
recursive algorithm. Let us see the first algorithm.

The first time that the recursive function is called at
every level, it has its buffer (levelbuffer) empty. Then, its
upper half (from N to 2N) is recursively filled with frames
from the previous level. Recall that once a frame is
received, it must be transformed using a 2D DWT before
being stored. Once the upper half is full, the lower half is
filled by using symmetric extension (the N+1 frame is
copied into the N-1 position,…, the 2N is copied into the 0).
On the other hand, if the buffer is not empty, it simply has
to be updated. In order to update it, it is shifted one position
so that the frame contained in the first position is discarded
and a new frame can be introduced in the last position (2N)
by using a recursive call. This operation is repeated twice.

However, if there are no more frames in the previous
level, this recursive call will return End Of Frame (EOF).
That points out that we are about to finish the computation
at this level, but we still need to continue filling the buffer.
We fill it by using symmetric extension again.

Once the buffer is filled or updated, both high-pass and
low-pass filter banks are applied to the frames in the buffer.
As a result of the convolution, we get a frame of every
wavelet subband at this level, and an LLL frame. The high-
frequency coefficients are processed according to the
application (compressed, saved to secondary storage, etc.)
and this function returns the LLL frame.

Every recursive function needs at least one base case to
stop backtracking. This function has two base cases. The
first case is when all the frames at this level have been read.
It is detected by keeping an account of the number of frames
read and the maximum number of frames that can be read at
every level. In this case, the function returns EOF. An
alternative when the number of frames in the sequence is
unknown a priori is propagating the EOF label. The second
base case is reached when level gets 0 and then no further
recursive call is need since a frame can be directly read
from the input video sequence.

The inverse DWT algorithm is similar to the forward
DWT, but applied in reverse order. An important difference
between this proposal and those based on GOPs is how the

function GetLLFrame (level)
1) First base case: No more frames to read at this level

if levellevel MaxFramesFramesRead
return EOF

2) Second base case: The current level belongs to the space
domain and not to the wavelet domain

else if 0level
return InputFrame()

else
3) Recursive case
3.1) Recursively fill or update the buffer for this level

if levelbuffer is empty
for NNi 2

)(ibufferlevel 2DFWT(GetLLframe (level 1))
FullSymmetricExtension(levelbuffer)

else
repeat twice

Shift(levelbuffer)
frame = GetLLframe (level 1)
if frame = EOF

)2(Nbufferlevel SymmetricExt(levelbuffer)
else

)2(Nbufferlevel 2DFWT(frame)

3.2) Calculate the WT for the time direction from the frames in

buffer, then process the resulting high frequency subband frames

LHHLHLLLHLLL ,,, = Z-axis_FWT_LowPass(levelbuffer)

HHHHHLHLHHLL ,,, = Z-axis_FWT_HighPass(levelbuffer)

ProcessSubFrames(HHHHHLHLHHLLLHHLHLLLH ,,,,,,)

set 1levellevel FramesReadFramesRead

return LLL

end of fuction
Algorithm 1.1: Recursive function

function LowMemUsage3D_FWT(nlevel)
set nlevellevelFramesRead level 0

set nlevellevelNframesFrameLines levellevel 2

set nlevellevelemptybuffer level
repeat

LLL = GetLLframe(nlevel)
if (LLL!=EOF) ProcessLowFreqSubFrame(LLL)

until LLL=EOF
end of function

Algorithm 1.2: Perform the 3DFWT by calling Algorithm 1.1

I - 471

video can be decoded from the middle of the bitstream, that
is, if the user begins to receive the video broadcast while it
is already in progress. In the regular algorithm, the current
group of frames being received is ignored, and then, the
following group is stored in memory. After it has been
entirely received, it can be decoded, and the 3D-IWT can be
applied. On the other hand, for the inverse transform in the
frame-by-frame scheme, the decoding process begins
immediately by filling up the highest-level buffer (nlevel)
with the information received from the bitstream. During
this process, other information from the bitstream is
ignored. Afterwards, once this buffer is full, we begin to
accept also information from the previous level, and so
forth, until all the buffers are full. At that moment, the video
can be sequentially decoded as usual. The latency of this
process is determinist and depends on the filter length and
the number of decomposition levels (the higher they are, the
higher latency). However, for the regular 3D algorithm, the
latency depends on the remaining number of frames in the
current group when the process begins, and the GOP size.

A drawback that has not been considered yet is the need
to reverse the order of the subbands, from the forward DWT
to the inverse one. This problem can be solved by using
some buffers at both ends, so that data are supplied in the
right order [9]. Other simpler solutions are: to save every
level in secondary storage separately so that it can be read in
a different order and, if the WT is used for compression, to
keep the compressed bitstream in memory.

5. MEMORY CONSUMPTION COMPARISON

In this new algorithm, at every level, each buffer must be
able to keep either 2N+1 low frequency frames (recall that
2N+1 is the filter length), or even less if the lifting scheme
is used as shown in [10]. As presented in Figure 1(a), each
buffer at a level i needs a quarter of coefficients if compared
with the previous level (i 1). Therefore, for a frame size of
(w×h) and an nlevel time decomposition, the number of
coefficients required by this algorithm is:

14)()12(4)()12()()12(nlevelhwNhwNhwN
which is asymptotically (as nlevel approaches infinity)

3
4)()12(

4
)()12(

0
hwNhwN

n
n

independently of the number of frames to be encoded, less
than the regular case, which needs (w×h×G), being G the
number of frames in a GOP. For instance, in a C
implementation, a 3D-DWT of a CIF sequence (with B5/3
and three decomposition levels) has required 2.5 MB with
our new proposal, while the regular algorithm with 32
frames/GOP needs 12.4 MB, and introduces discontinuities
in the transform, being less efficient for coding purposes.

6. CONCLUSIONS

A frame-by-frame transform algorithm has been presented,
considering the existing problems about different delay and
rhythm among the buffers. The new algorithm reduces the
memory requirements compared with the regular one,
computing exactly the same coefficients. In addition, there

is no need to artificially divide the video sequence in
constant-size group of pictures. As future work, a motion
estimation stage will be included to align video motion,
improving coding efficiency by approaching a t+2D
scheme.

7. REFERENCES

[1] P. Campisi, A. Neri, “Video watermarking in the 3D-DWT
domain using perceptual masking,” IEEE International
Conference on Image Processing (ICIP), pp. 997-1000, Sept 2005.

[2] P. Schelkens, A. Munteanu, J. Barbariend, M. Galca, X. Giro-
Nieto, Jan Cornelis, “Wavelet Coding of Volumetric Medical
Datasets,” IEEE Tr. Medical Imaging, pp. 441-458, March 2003.

[3] P.L.Dragotti, G.Poggi, “Compression of multispectral images
by three-dimensional SPITH algorithm,” IEEE Transactions on
Geoscience and Remote Sensing, pp. 416-428, Jan 2000.

[4] M. Avilés, F. Morán, N. García, “Progressive Lower Trees of
Wavelet Coefficients: Efficient Spatial and SNR Scalable Coding
of 3D Models,” LNCS, vol 3767, pp. 61-72, 2005.

[5] B. J. Kim, Z. Xiong, W. A. Pearlman, “Low bit-rate scalable
video coding with 3D set partitioning in hierarchical trees (3D
SPIHT),” IEEE Tr. on Cir. and Sys. for Video Tech., Dec 2000.

[6] A. Said, A. Pearlman. “A new, fast, and efficient image codec
based on set partitioning in hierarchical trees,” IEEE Transactions
on Circuits and Systems for Video Technology, June 1996.

[7] A. Secker, D. Taubman, “Motion/compensated highly scalable
video compression using an adaptive 3D wavelet transform based
on lifting,” IEEE ICIP, pp. 1029-1032, Oct 2001.

[8] P. Cheng, J.W.Woods, “Bidirectional MC-EZBC with lifting
implementation,” IEEE Transactions on Circuits and Systems for
Video Technology, pp. 1183-1194, October 2004.

[9] C. Chrysafis, and A. Ortega, “Line-based, reduced memory,
wavelet image compression,” IEEE Transactions on Image
Processing., March 2000.

[10] J. Oliver, E. Oliver, M.P.Malumbres, “On the efficient
memory usage in the lifting scheme for the two-dimensional
wavelet transform computation,” IEEE ICIP, Sept 2005.

[11] E. Moyano, F.J. Quiles, A. Garrido, L. Orozco-Barbosa, J.
Duato, “Efficient 3D wavelet transform decomposition for video
compression,” Int. Work. Digital & Computational Video, Oc2001.

[12] Y. Nian, L. Wu, S. He, Y. Gu, “A new video coding based on
3D wavelet transform,” IEEE International Conference on
Intelligent Systems Design and Applications, Oct 2006.

[13] G. Bernabé, J. González, J.M. García, “Memory Conscious
3D Wavelet Transform,” Euromicro Conference, Sept 2002.

[14] Sweldens, “The lifting scheme: a custom-design construction
of biorthogonal wavelets,” Appl. Comput. Harmon. Anal., 1996.

I - 472

