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ABSTRACT

Rotational types of motion can often be seen in video sequences.
However, not a lot of research has been done to investigate rota-
tional motion models for use in video. Analysing this unique type of
motion could be very useful. For example, if the the centre of rota-
tion of a spinning object can be efficiently identified, extraction and
tracking of it can be made easier by grouping points moving at the
same radial speed. It could also improve compression by recording
rotation variables. In this paper, we introduce a method for find-
ing the centre of rotation of a rotating object and a basic approach
for modelling the rotation for improved image quality. The method
requires an initial block based translational motion field.

Index Terms— rotation detection, rotation estimation, curl

1. INTRODUCTION

Motion Estimation is an essential part of most modern digital video
encoding standards such as H.261 or MPEG. Frames are divided into
blocks and the motion of each block is estimated from the previous
frame. The motion of each block is represented by a single trans-
lational motion vector and a motion vector field is created for each
frame. Therefore each frame can be considered a motion compen-
sated version of the previous frame. In doing this, high compression
rates can be achieved as only the original image and the motion vec-
tors are required for reconstruction.

Although rotation is a well understood area, rotational modelling
techniques are complex and their accuracy is still in question. Hence
in video encoding translational motion estimation is the typical mo-
tion model used. This can produce poor results when reconstructing
rotating objects, in particular at the object’s edges, where blocking
artefacts can become more apparent.

Rotational motion can often be seen in video sequences. The
moving wheels of a car, skaters spinning on ice or a high diver per-
forming somersaults are some examples of rotational motion that
could be captured on video. If the centre of rotation of a spinning
object can be efficiently identified, extraction and tracking of it can
be made easier, as points of the object at the same distance from the
centre move at the same speed, and can be grouped together easily.

Existing rotation analysis mainly focuses on transformation tech-
niques. In [1] and [2], Fourier transform is applied to estimate the
rotation angle. The wavelet transform is also used to estimate the
motion of rotating objects in [3]. In [3] a new continuous wavelet
transform was constructed that could be tuned to both translational
and rotational motion. The parameters of analysis that are taken into
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Fig. 1. An example of artefacts as seen on a rotating wheel. The fine
detail is lost due to edge blurring in the motion estimation. There is
a loss of still image quality.

account in the rotational wavelet transforms are space and time posi-
tion, velocity, spatial scale, angular orientation and angular velocity.
The analysis techniques introduced in these papers is often compu-
tationally expensive, and requires a well structured motion field that
fits the mathematical models to work well.

The method of rotation detection developed in this paper has
already been used in a Psychology project [4], where the rotating
object in question was the top of a child’s head. The particular event
of interest was rotation of the childs head and that information was
used to finely parse a video sequence. These further segmented se-
quences were to be automatically analysed and particular motions
extracted.

While [4] is concerned with a particular kind of event, this paper
introduces a technique to improve rotation modelling in an arbitrary
image sequence. In Section 2, a novel method for rotation detec-
tion and centre of rotation identification is introduced. This method
uses a translational motion field from a block based motion estima-
tor. In Section 3 a means to segment the rotating area is shown. In
Section 4 a method for estimating the amount of rotation occurring
is introduced. Also in this section a method is developed to rotate
the rotating section of the image instead of using the translational
motion field to reconstruct this part of the image. The experimental
setup for evaluating the efficiency and effectiveness of this method
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Fig. 2. An example sequence of a rotating rainbow disc. The number
of motion vectors overlaid have been reduced for clarity. The second
image is the resulting curl measurement for the entire motion field.

are shown in Section 5. This is followed by a summary in Section 6.

2. ROTATION DETECTION

By measuring the curl of the motion field it is possible to detect
rotation. The motion field is initialised by translational motion field
on a block basis. Gradient Based motion techniques introduced in
[5] are used here. Curl is defined by the equation below.
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]_"and % are the orthonormal basis for the vector space. d; and d2
are the estimated translational motion vector components in the x
and y directions at pixel X. The curl is essentially the sum of the
derivative of the x component in the y direction with the derivative
of the y component in the x direction.

The curl measurement at each pixel is smoothed using a Gaus-
sian filter of suitable size for the given resolution. The curl mea-
surement gives clear evidence of rotation in the form of a large peak
at the centre of the rotation. The centre of rotation is taken to the
peak maxima. An example is shown in figure 2. Clockwise pointing
motion vectors will give a positive central peak value while anti-
clockwise motion vectors will give a negative central peak value.
This is useful for estimating the angle of rotation later on, as it tells
you that there is only one direction to search in.

During a rotation event certain observations can be made about
the curl peak that correlate with rotation. The value of the maxima
can be directly correlated with the rate of rotation and the area the
peak covers is directly related to the visible area of the rotating ob-
ject. The location of the main rotational peak can be considered con-
stant during rotation and measuring the fluctuation in position helps
indicate whether a peak is a rotational peak or not. These correla-
tions can be seen in figure 3. The data was observed for an example
sequence of the rotating disc in figure 1.

As can be seen in figure 3 whenever there is a rotation there
is a rise in the curl maxima value and a fall in the corresponding
distance values from curl maximum to curl maximum from frame to
frame. The fall in distance value indicates a increase in curl position
stability which is expected during rotation.

The next step in replacing a translational motion model with a
rotational model is to find the area of the rotating object. Then an
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Fig. 3. In the graph above the red solid line plot represents a sample
normalised curl maxima values. The dashed blue line plot above is
the normalised distance values from curl maximum to curl maximum
for consecutive frame. The green vertical line plot is the manually
noted beginning and end points of rotation in the video sequence.

Fig. 4. An right image is an example Rotation image with overlaid
estimated rotation mask. The left image is the accumulation of the
lines perpendicular to the motion vector for a frame.

estimate of the centre of rotation and angle of rotation is needed. The
approach presented in this paper is relatively simple one which can
be implemented with relative ease.

3. ROTATION SEGMENTATION

For a more accurate representation of rotation, a robust mask cov-
ering the rotating region is required. This was done by exploiting
the proximity of the perpendicular motion vector lines to the centre
of rotation, an example is shown in figure 4. This is based on the
principle that perpendicular lines to tangents (the motion vectors) of
a circle (the rotating object) always pass through the centre of rota-
tion. All perpendicular lines that pass within a reasonable tolerance
of the centre of rotation can be considered part of the rotating object.

There is however a problem with short motion vectors that can
cause large deviations from what is expected. To reduce this effect
the vectors with a length shorter than a threshold are ignored. This
improves the overall accuracy of the mask estimate.

There is a need to remove any random motion vectors outside the
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object that happen to pass close to the centre of rotation by chance.
To do this consider the distance from the centre of rotation to each
motion vector position. A histogram of distances from each motion
vector position to the centre of rotation is used to develop a threshold
radius, inside which is the rotating object.

Given the observed Gaussian nature to the radius histogram, the
threshold radius R was set to be the upper bound of the 95% confi-
dence interval.

Threshold Radius R = M + 1.96 x SD

Where M is the histogram mean and SD is the histogram standard
deviation. The segmentation mask was then set to be circular with
the centre located at the curl maxima and radius equal to R, as shown
in figure 4. Any pixels within the radius R are set to one and those
outside are set to zero. When this is multiplied by the image only the
rotating object is visible, an example of which can be seen in figure
4.

4. ROTATION ESTIMATION

The model for pure image rotation is as shown in equation 2. The
model is only applied to the masked part of the image found in the
previous section.

h cost
In(h, k) = In—1 ({ k ] x { sinb

In equation 2, h and k are the pixel positions in the frame ma-
trix measured with reference to centre of rotation. 6 is the angle of
rotation and e is the error difference between the two frames. From
equation 2, the error function, used in the simplex method, is de-
rived. The Simplex method finds the smallest value of 6 required to
minimise the mean square error E of the error function 3 below.
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The Simplex search technique of [6] is used to minimise the
error function E. This is a direct search method that does not use
numerical or analytic gradients. If n is the length of z, a simplex in
n-dimensional space is characterized by the n + 1 distinct vectors
that are its vertices. In two-space, a simplex is a triangle; in three-
space, it is a pyramid. At each step of the search, a new point in
or near the current simplex is generated. The function value at the
new point is compared with the function’s values at the vertices of
the simplex and, usually, one of the vertices is replaced by the new
point, giving a new simplex. This step is repeated until the diameter
of the simplex is less than the specified tolerance.

Once the 6 has been calculated the masked image section of
frame n — 1 is rotated 6 radians around the previously determined
centre of rotation. The mask itself is transformed to align with the
position of the rotated object from frame n. This mask can now be
used to switch smoothly between translational and rotational motion
compensation.

5. EXPERIMENTAL RESULTS

In figure 5 a sequence of frames are shown overlaid with the forward
pointing motion vectors, these estimate the position of each block
in the next frame. The second row in figure 5 show the estimated

reconstruction of the next frame using the motion vectors and the
previous frame, as it can be seen this is less than ideal as there are
many blocking artefacts and distortions. The third row show the ro-
tation masking for the previous frames. The bottom row of figure 5
are frames constructed using the rotational motion model discussed
in this paper. It can be seen that it gives a much more accurate repre-
sentation of the image with relatively minimal edge distortions. Over
10 frames of the sequence, the prediction error of the mask and ro-
tation estimate was compared to the translational motion model. A
reduction of 20% was observed.

6. CONCLUDING REMARKS

This approach worked well when detecting rotation and the curl
equation can be used to find some very interesting features about
rotation. There are however some limitations to this approach. First
of all, the method works well when the the rotating object is parallel
to the image plane of the camera, but in many other instances of ro-
tation in real scenes this is not true. Transforming the vector field in
the region of rotation centres should help to segment rotating objects
that are not exactly parallel and this is currently being considered.

In addition, the rotating object must have sufficient texture and
must be rotating slowly enough to be detected by the motion esti-
mator. If these conditions are not met then the rotation would not
be obvious to the human eye anyway, and therefore finding rotation
would have no benefit. Future work will include the possibility of
using this approach directly on MPEG stream motion vectors. The
goal would be to improve the motion estimation and compression
ratio. If this approach could be included in MPEG preprocessing,
then circular motion could be more accurately represented and visi-
ble blocking artefacts reduced.
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Fig. 5. The top row of images show frames 36 to 38 over laid with translational motion vectors. The second row of images show the motion
compensated frame [, 1 (x + dn,nq), where d,,»,—1 is the translational motion for a block in frame n — 1. The third row of images are the
masked portions of rotation for frame 35-37. The bottom row of images show the reconstructed frames 36-38 from frames 35-37 using the
rotational model.
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