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ABSTRACT 

A novel extension of phase correlation to subspace corre-
lation is proposed, in which 2-D translation is decom-
posed into two 1-D motions thus only 1-D Fourier trans-
form is used to estimate the corresponding motion. In 
each subspace, the first two highest peaks from 1-D cor-
relation are linearly interpolated for subpixel accuracy. 
Experimental results have shown both the robustness and 
accuracy of our method.   

Index terms: Fourier transform, phase correlation, image 
registration, subpixel alignment, subspace projection. 

1. INTRODUCTION 

Phase correlation is a well-known technique of broad ap-
plications in motion estimation, image registration, ob-
ject recognition and even video shot detection [1-4]. The 
baseline method utilizes the Fourier shift theorem, ac-
cording to which shifts in the spatial domain correspond 
to linear phase changes in the frequency domain [5]. 
Phase correlation can be further extended to estimate 
changes of rotation and scale using the Fourier-Mellin 
transform and pseudo-polar Fourier transform [6-8]. Fur-
thermore, phase correlation can be also used for affine 
motion estimation [9]. However, registration of shifts be-
tween images with high accuracy remains a fundamental 
task which can be further improved upon. 

Let ),( yxr  be a reference image and ),( yxg be a 

test image satisfying ),(),( 00 yyxxgyxr ++= , and 
their corresponding Fourier transforms are denoted as 

),( vuG and ),( vuR . Then, we have  

)(2 00),(),( vyuxjevuGvuR += π   (1) 

This can be re-written as  
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where * is the complex conjugate, 1−=j , and 
),( vuP is the cross power spectrum of the two images.  

If we apply the invert Fourier transform 1−F to 
),( vuP , a Dirac function centered at ),( 00 yx  is ob-

tained as below 

( ) ( ) ),(),( 00
)(211 00 yxeFvuPF vyuxj δπ == +−−  (3) 

It is also worth noting the following. Firstly the Fou-
rier transform uses finite size of data, which makes the 
Dirac function to be a unit impulse despite the periodicity 
assumption [10]. Secondly the peak value can be substan-
tially less than unity due to non-overlapping regions be-
tween the two images. Finally, sub-pixel accuracy is de-
sired because the true motion vector ),( 00 yx  has nothing 
to do with the underlying discrete image acquisition grid. 

Subpixel registration is also very relevant to medical 
imaging, such as magnetic resonance imaging (MRI), in 
which non-integer offsets between images commonly oc-
cur at the image acquisition stage. Since MRI data is 
sampled in the spatial Fourier domain, registration by 
phase correlation is a natural way in such a context [1].  

After phase correlation, motion vectors are identified 
as significant peaks in ),( 00 yxδ . In order to obtain ac-
curate correlation results, the corresponding candidate 
peaks should be high enough. As a result, some pre-
processing steps like windowing or filtering of the data 
are adopted to overcome aliasing noise. Nevertheless, 2-
D Fourier transform used in these approaches seems still 
very computational expensive, especially for the case 
with a large volume of data, such as MRI analysis. 

The motivation here is to present a fast and robust 
solution to phase-correlation based image registration. A 
projection-based subspace scheme is proposed for 1-D 
phase correlation, and an improved scheme for subpixel 
registration using linear interpolation is also presented.  

2. THE APPROACH  

The concepts of subspace and projection are not new in 
phase correlation, such as the work in [1] and [12]. How-
ever, in both cases they are used to identify subpixel dis-
placement on the basis of 2-D phase correlation, which is 
different from our approach as explained below. 
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2.1. Subspace phase correlation  

For ),(),( 00 yyxxgyxr ++= , 2-D motion (dis-
placement) between the images can be denoted as 

),(),( 00 yxgrM xy = , which can be further decom-

posed to two 1-D motion as  

)0,(),( 0xgrM x =    (4-1) 

),0(),( 0ygrM y =   (4-2) 

At the same time, 2-D phase correlation can also be 
decomposed as two 1-D phase correlation operations in 
order to estimate the horizontal and vertical shifts 0x
and 0y  respectively. 

Let ),(' yuGx and ),(' yuRx  be the 1-D Fourier 

transform to each column of ),( yxg  and ),( yxr , i.e. 

( )),(),(' yxgFyuG xx = , ( )),(),(' yxrFyuR xx = . 

The projected spectrums of ),(' yuGx  and ),(' yuRx

onto the u -axis, )(uGx  and )(uRx , can then be de-
fined as follows:  

=
y

xx dyyuGuG ),()( '   (5-1) 

=
y

xx dyyuRuR ),()( '   (5-2) 

Then, 1-D phase correlation between )(uGx  and 
)(uRx  can be obtained as 
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and the shift along the x -axis, 0x  is estimated by 
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211 0 xeFuPFxp x

uxj
xx δπ === −−  (7) 

Similarly, the shift along the y -axis 0y  can be es-
timated by  
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where )(vRy  and )(vGy are projected spectrums de-

fined by 1-D Fourier transform )(⋅yF  to each row of the 

images as 

( )=
x

yy dxyxgFvG ),()(   (9-1) 

( )=
x

yy dxyxrFvR ),()(   (9-2) 

Let us denote by )(xg x , )(yg y , )(xrx  and 

)(yry  the 1-D signal projections of the 2-D images 

),( yxg  and ),( yxr , i.e. =
y

x dyyxgxg ),()( , 

=
x

y dxyxgyg ),()( , =
y

x dyyxrxr ),()(  and 

=
x

y dxyxryr ),()( . It is easy to find that actually 

only one 1-D Fourier transform is required to obtain ei-
ther )(uGx , )(uRx  or )(vRy  and )(vGy , owing to 

the linearity of the Fourier transform.  

( ))(),()( xgFdyyxgFuG xx
y

xx ==    (10-1) 

( ))()( ygFvG yyy =   (10-2) 

( ))()( xrFuR xxx =    (11-1) 

( ))()( yrFvR yyy =    (11-2) 

2.2. Subpixel registration  

Usually, an initial 2-D displacement ),( 00 yx  is ob-
tained by separately checking the highest peak in x and y 
directions. If )','( 00 yx as the subpixel offset, then 0'x
will be estimated either between 0x  and 10 −x  or be-

tween 0x  and 10 +x  depending upon whether 

)1( 0 −xpx  or )1( 0 +xpx  has the higher absolute 

height. Similarly, 0'y is estimated either between 0y
and 10 −y  or between 0y  and 10 +y  depending upon 

whether )1( 0 −ypy  or )1( 0 +ypy  has the higher ab-
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solute height. As 0'x  and 0'y  are determined independ-

ently, we only present the way how 0'x  is decided. 

As )( 0xpx  and )( 0ypy  are the highest peaks re-

spectively in )(xpx  and )(ypy , the above means that 

the first two highest peaks (the main peak and its highest 
side peak) are selected for subpixel registration. How-
ever, if the heights of two side peaks are close enough, 
initial integer offset is remained. This is measured by 

η<+− )1,1( 00 xxd , which is further defined by 

)1()1(
)1()1(

)1,1(
00

00
00 ++−

+−−
=+−

xpxp
xpxp

xxd
xx

xx   (12) 

where 15.0=η  is a threshold used to identify two side 
peaks of similar height. It is worth noting that if one of 
the two side peaks is positive and the other is negative, 
the corresponding measurement )1,1( 00 +− xxd  be-
comes larger than 1 and the following subpixel interpola-
tion scheme is applied.  
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3. RESULTS AND DISCUSSIONS  

The MRI data set used in our experiments is from Hoge 
and contains five MRI images of a grapefruit [1]. The 
true offsets between each pair of images are known and 
subsequently used as ground truth maps for performance 
evaluation. The first MRI image is shown in Figure 1.  

   
Figure 1. One test image of size 256*256 (Courtesy of 
W. S. Hoge).  

3.1. Accuracy analysis 

In this group of experiments, the performance of subpixel 
registration using our method applied to noise-free origi-
nal images is compared against the techniques of Hoge 
[1], and Foroosh et al [11]. Pair-wise registration results 
in x and y directions are illustrated in Table I and II, re-
spectively.  

Table I. Pairwise registration results in x-direction 

Image 
Pairs 

Physical 
Offset  

Foroosh 
et al [11] 

Hoge  
[1] 

Our  
method 

(1,2) -2.40 -2.23 -2.03 -2.18 
(1,3) -4.80 -4.07 -4.13 -4.33 
(1,4) -7.20 -6.59 -6.81 -6.65 
(1,5) -7.20 -6.59 -6.82 -6.61 
(2,3) -2.40 -2.10 -2.10 -2.29 
(2,4) -4.80 -4.55 -4.28 -4.55 
(2,5) -4.80 -4.55 -4.78 -4.57 
(3,4) -2.40 -2.00 -2.17 -2.40 
(3,5) -2.40 -2.00 -2.18 -2.41 
(4,5) 0.00 -0.26 0.01 0.00 

mean -0.34572 -0.30861 -0.24066 
Std-dev 0.28075 0.20681 0.22808 

Error 
analysis MSE 0.19046 0.13373 0.10474 

Table II. Pairwise registration results in y-direction 

Image 
Pairs 

Physical  
offset 

Foroosh 
et al [11] 

Hoge 
[1] 

our  
method 

(1,2) -4.00 -4.23 -4.01 -4.00 
(1,3) -8.00 -8.24 -8.01 -8.00 
(1,4) -4.32 -4.41 -4.17 -4.37 
(1,5) -12.00 -12.26 -12.02 -12.00 
(2,3) -4.00 -3.60 -3.99 -3.69 
(2,4) -0.32 -0.39 -0.15 -0.38 
(2,5) -8.00 -8.24 -8.00 -8.00 
(3,4) 3.68 3.61 3.84 3.57 
(3,5) -4.00 -3.56 -4.51 -4.00 
(4,5) -7.68 -7.92 -7.85 -7.62 

mean 0.06127 0.02243 -0.01462 
Std-dev 0.26525 0.19999 0.11185 

Error 
analysis

MSE 0.0671 0.0365 0.01147 

According to the ground truth (physical offset), an 
error vector between physical offset and estimated dis-
placements is obtained for each approach in x  and y
directions, respectively. Let xδ  and yδ  denote the corre-
sponding error vectors, i.e. )(ˆ)()( ixixix −=δ  and 

)(ˆ)()( iyiyiy −=δ , where )(ix   and )(iy  are the thi
physical offset, and )(ˆ ix  and )(ˆ iy  are their estimates. 
For each error vector, generally it is modelled as a nor-
mal distribution and its mean μ  and standard deviation 

I - 483



σ  are used to measure the accuracy of the estimation. 
However, one error vector may have a small mean error 
but a big standard deviation, or a big mean error but a 
small standard deviation. As a result, mean square error 
(MSE) between the estimates and ground truth is used as 
an overall measurement.  

In Table I and II, the mean, standard deviation and 
range errors in x  and y  directions are given for com-
parison purposes. It is easy to see that the overall accu-
racy along the y -axis is better than that along x -axis, 
which is possibly due to the difference in generating dis-
placements in different directions (see [1] for detail). In 
both x  and y  directions the approach from [11] gener-
ates maximum error values. 

In x direction, Hoge’s method yields minimum stan-
dard deviation but moderate mean error. On the other 
hand, our approach using subspace (1-D) phase correla-
tion produces minimum (absolute) mean error but also 
causes a slightly higher standard deviation. In the  y  di-
rection, Hoge’s method performs worse both in terms of 
mean error and standard deviation. Considering the 
MSE, the proposed approach seems the best solution in 
these experiments. Moreover, the results confirm the fact 
that 2-D displacements can be successfully estimated us-
ing subspace phase correlation. 

3.2. Computational complexity analysis 

In both 2-D phase correlation and subspace correlation, 
fast Fourier transform (FFT) forms the main computa-
tional load. In some approaches, additional processing is 
required such as windowing, partial differencing or even 
singular value decomposition [1]. If the original images 
are of NN × , then the computing complexity of FFT in 
2-D and subspace correlation is )log( 2

2 NNΟ  and 

)log( 2 NNΟ , respectively. To the best of our knowl-
edge, our subspace scheme is the fastest and lowest–
complexity scheme among those reported in the literature 
while producing high-accuracy registration results.

4. CONCLUSIONS  

A novel extension to the phase correlation image regis-
tration approach is presented, in which subspace phase 
correlation is introduced along with linear interpolation 
for subpixel accuracy. Experimental results on real MRI 
images showed accuracy and robustness of our approach. 
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