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ABSTRACT

Current multimodal registration methods almost always rely
on local gradient-descent type optimization strategies. Such
registration methods often converge to an incorrect local op-
timum, especially when the initial misregistration is large.
There are monomodal image registration methods that em-
ploy global optimization techniques. This paper introduces
the use of these global optimization methods for multimodal
image registration. The goal is to robustly bring the images
into close enough registration that a local optimization method
could ne-tune the solution. The method proposed here is
based on edge information extracted from the images. Posi-
tive results from a modest set of test cases suggests that this
approach is promising.

Index Terms— multimodal, rigid, registration, Fourier,
correlation

1. INTRODUCTION

One of the major stumbling blocks facing multimodal regis-
tration is the ability to compute the correct registration solu-
tion when the two images have a large initial misregistration.
In this paper, we address the idea of computing the registra-
tion parameters for a multimodal registration scenario using
only global operations. This type of globally-exhaustive reg-
istration has enjoyed much success in monomodal registration
[1, 2, 3, 4], but has yet to be deployed effectively in a multi-
modal environment.
The vast majority of multimodality registration methods

employ local optimization strategies to minimize (or maxi-
mize) the desired cost function. One of the most prominent
cost functions is mutual information [5, 6] (as well as normal-
ized mutual information [7]). However, these entropy-based
cost functions rely on local gradient-decent-type strategies to
nd the optimal solution. There is no knownway to ef ciently
compute the cost function for a large portion of the motion pa-
rameters space.
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When two images are of the same modality, their Fourier
Transforms (FT) encode many useful relationships regard-
ing registration. For example, it is commonplace to decou-
ple the rotation and translation parameters via the FT [3].
When an image rotates, its FT also rotates by the same an-
gle. Hence, a rotation can also be assessed from the Fourier
coef cients. Typically, one rst nds the optimal rotation by
resampling the Fourier coef cient magnitudes into polar co-
ordinates, thereby reducing the search for the best angle to
a search for the best shift along the θ-axis. Then, after ap-
plying the appropriate rotation to the image, one can use the
phase of the resulting FT to derive the translation. This can
be done in a few different ways. Probably the most popular
is the phase correlation technique [1, 2, 4], whereby the cor-
responding Fourier coef cients of the two images are divided
(canceling their magnitudes), leaving only their phase differ-
ences; the inverse FT of this phase image yields a single spike
impulse whose location indicates the optimal shift of one im-
age to align it with the other. Another approach is to compute
either the cross-correlation [8] or sum of squared differences
[9] cost function, using the maximum or the minimum (re-
spectively) to indicate the correct shift. Both cost functions
involve convolution-like operations that can be computed ef-
ciently using the Fast Fourier Transform (FFT) [10].
In this paper, we propose the use of global optimization

methods for multimodal registration. Our goal is to avoid
the pitfalls of local optimization methods and transparently
handle multimodal registration sceanrios with arbitrary ini-
tial misregistration, and bring the images into close enough
alignment that one of the well-established local-optimization
methods can dependably ne-tune the solution.

2. METHODS

2.1. Estimating the Rotation

We attack the rigid-body registration problem in two steps:
rotation rst, then translation. Figure 1 shows a schematic
of the method for computing the optimal rotation angle. The
process starts by extracting edge information from each of
the two images using a Canny lter [11]. The success of the
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Fig. 1. Determining the optimal rotation

method depends on the edges being reasonably similar be-
tween the two images. To nd the rotation between these two
edge images, we take their 2D FFT’s and compute the mag-
nitudes of their Fourier coef cients. If the two images have
similar edges, then their Fourier Transforms will be approxi-
mately rotated versions of one another. A rotation is equiva-
lent to a shift along the θ-axis of a polar-coordinates represen-
tation. We resample the two Fourier-magnitude images onto
a polar grid. To assess the optimal shift along the θ-axis, we
compute the cross-correlation between the two polar plots for
each xed radius. The cross-correlation between two signals
f and g is

C(θ) =
∑

n

fn−θgn . (1)

The cross-correlation can be computed ef ciently using the
FFT [8] by

C(θ) = F−1
{
F{f}F{g}

}
θ

,

where F{·} is the Fourier Transform, and F{f} is the com-
plex conjugate of F{f}. Hence, we can compute the cross-
correlation between signals of lengthN inO(N log N) oat-
ing point operations, since that is the computational complex-
ity of the FFT algorithm [10]. This approach can be consid-
erably faster than the O(N2) approach of directly computing
(1) for every integer shift θ [12].
Once we have computed the cross-correlation Cr(θ) for

each radius r, we combine them over all r using the weighted
sumCΣ(θ) =

∑
r rCr(θ), the rationale being that each cross-

correlation function should be weighted according to its cir-
cumference in the Cartesian coordinate system. The θ-value
that corresponds to the maximum value of CΣ(θ) is our esti-
mate for the rotation required to place our two original images
in the same orientation. Because of the conjugate symmetry
in the FT of a real-valued image, our cross-correlation func-
tion is actually a single 180◦ piece, repeated twice. Hence, the
maximum of CΣ(θ) occurs at two angles separated by 180◦.
We carry both candidate rotations on to the next phase of the
registration procedure.

2.2. Estimating the Translation

We compute the optimal shift for each of the two candidate
angles, and choose the angle that yields a better overall match
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Fig. 2. Determining the optimal shift

after the shift is applied. Thus, the following methodology
applies to each angle. An overview of this process is shown
in Fig. 2.
We use our angle to rotate our images into the same orien-

tation. We then compute the magnitude of the gradient vec-
tors for each image. Like the Canny edge images used to
compute the optimal rotation, these gradient magnitude im-
ages contain edge information while suppressing most of the
modality-speci c pixel intensity information. We then em-
ploy the phase correlation method to nd the best shift to
align these two edge images. The procedure for computing
the phase correlation function starts by taking the 2D FFT of
each image. Then, each Fourier coef cient of one image is di-
vided by the corresponding Fourier coef cient from the other
image. The magnitudes of the resulting coef cients are all set
to unity, and the inverse Fourier Transform of this phase im-
age yields the phase correlation function. If the two images
are shifted versions of one another, then the phase correlation
function will have a single distinct spike. The position of the
spike indicates the optimal shift.
This method is run on each of the two angles arising from

the rotation estimation stage (the two angles differ by 180◦).
The angle that yields a taller spike is chosen as the optimal
rotation angle estimate. The location of that spike determines
the optimal shift.

2.3. Experiments

The methodology outlined above was implemented in MAT-
LAB (Mathworks Inc., Natick, Massachusetts). For lack of
a better acronym, we will refer to our globally optimal edge-
based registration method as GO-EDGE.
We performed registration experiments on the six image

pairs depicted in Fig. 3. Some of the images, when zero-
padded, contain a clear edge at the original image boundary.
That is, some of the images have content that extends right
to the image boundaries. These arti cial edges could unfairly
aid the registration process. To avoid this, images with these
boundary edges were rst multiplied by a Hann window [13]
to taper the pixel intensities gently toward zero at the image
boundaries (not shown in Fig. 3). The two images in each im-
age pair were padded with zeros as necessary to make them
the same size, followed by zero-padding on all four sides by

I - 486



a) Head c) Torso (CT to T1)b) BrainWeb

e) Teethd) Torso (photo to CT) f) Fingerprints

Fig. 3. Image pairs used to evaluate the registration method. The “Head” and “Torso” images are from the Visible Human
project. The “BrainWeb” images were acquired from the BrainWeb simulated MRI phantom [14]. The “Teeth” images are
courtesy of Dr. David Sweet (Bureau of Legal Dentistry, University of British Columbia). The “Fingerprints” images are from
the training dataset of the FVC2002 competition [15].

an additional 128 pixels to allow room for rigid-body trans-
formations. Prior to computing the initial 2D FFTs at the
beginning of the rotation-estimation stage, the images were
zero-padded (in addition to the zero-padding described above)
with 128 pixels on all sides to produce super-sampling in the
frequency domain.
For each image pair, ten registration trials were created.

Each trial consisted of randomly choosing a rotation angle
(uniformly from 0◦ to 360◦), as well as randomly choosing
horizontal and vertical offsets (using a zero-mean Normal dis-
tribution with standard deviation of 20 pixels). Each image
pair was initially registered, so the true registration parame-
ters are known for each trial.
We ran our method on all 60 registration cases and com-

pared our estimated motion parameters to the true motion pa-
rameters. If all three parameters were within 10 (degrees or
pixels) of the true value, then the registration trial was consid-
ered a success. If any one of the three parameters was more
than 10 (degrees or pixels) away from the true value, then the
trial was considered a failure.
For comparison, we also registered all 60 trials using FLIRT

[16], a state-of-the-art medical image registration application
developed by Oxford’s FMRIB group [17]. The cost function
was set to the correlation ratio (CR). The developers of FLIRT
have gone to great lengths to make it as robust as possible in
the face of large initial misregistrations. However, FLIRT’s
optimization engine is essentially a local optimization tech-
nique built into a multiresolution framework, in addition to
a rudimentary coarse parameter sampling. We developed a

FLIRT schedule le (a script that dictates its optimization
strategy) to mimic FLIRT’s default 3D rigid-body registration
behaviour in a 2D rigid-body context.

3. RESULTS AND DISCUSSION

The proportion of successful trials for both registration meth-
ods is reported in Table 1. Both methods were successful
on all the Head and BrainWeb trials. FLIRT was also quite
effective at registering the Torso CT-T1 image pair. How-
ever, FLIRT did not successfully register any of the remain-
ing trials involving the Torso graylevel photo, the Teeth, or
the Fingerprints (these image pairs are shown in Fig. 3). It
is worth noting that FLIRT’s four failed cases in the Torso
CT-T1 image pair were close to the 10◦/10-pixel criterion.
In fact, FLIRT consistently computed the correct rotation for
these trials, but consistently computed a slightly erroneous
translation that sometimes resulted in success, and sometimes
resulted in failure, depending on the orientation of the true so-
lution. In general, FLIRT’s failed cases were the result of re-
peatedly converging to a wrong, though consistent, solution.

Six of the 16 failed GO-EDGE cases involved rotation es-
timates that were approximately 180◦ away from the true ro-
tation, suggesting that the method correctly assessed the an-
gle, but the shift estimation stage yielded a higher correlation
for the incorrect of the two angles. In total, FLIRT succeeded
in 43% of the trials, while the GO-EDGE method succeeded
in 73% of the trials.
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Table 1. Registration success rate
Dataset GO-EDGE FLIRT
Head 100% 100%
BrainWeb 100% 100%
Torso (CT→ T1) 100% 60%
Torso (photo→ CT) 50% 0%
Teeth 40% 0%
Fingerprints 50% 0%

4. CONCLUSIONS

Based on the small set of test cases, the use of global opti-
mization methods shows promise for multimodal rigid-body
registration. Such global methods are almost entirely used
for monomodality registration. However, we have shown that
image edge information can be suf cient for multimodal reg-
istration. We feel that the use of global optimization tech-
niques is key with these edge images; edge images are often
quite sparse, which may spell trouble for a local optimization
method. The use of global optimization methods avoids these
pitfalls.
Future work includes investigating the use of phase infor-

mation to choose which of the two candidate angles to use.
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