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ABSTRACT
In this paper, we present a method based on tangent distance
to estimate motion in image sequences. Tangent distance com-
bines an intuitive understanding and effective modeling of
differences between patterns. This tool was first introduced
and successfully applied in character recognition. It allows to
compare patterns according to small transformations (trans-
lations, rotations, etc.). We show, how to take advantages
of some properties of tangent distances to perform a robust
motion estimation algorithm. Particularly, the presented al-
gorithm can easily be adapted and optimized to various types
of movements and can also be used to estimate optical flow in
image sequences. Moreover, and despite a time of computa-
tion a bit long, this algorithm can be massively paralleled.

Index Terms— Motion analysis, Optical flow, Tangent
distance

1. INTRODUCTION

The estimation of motion in a sequence of images is a ba-
sic task in computer vision. A lot of new techniques have
evolved. Optical flow [1] gives the distribution of the appar-
ent movement of the brightness patterns in an image. A class
of techniques that received a special interest for its simplic-
ity and computational efficiency is based on the idea that for
most points in the image, neighboring points have approxi-
mately the same brightness. This class of techniques is known
as the gradient-based techniques [2] and is composed of two
sub-classes, namely, global and local. Frequency domain ap-
proaches [3, 4], consider the motion estimation is based on the
phase changes in the frequency domain. Block-based meth-
ods [5] find the best block from a previous frame, generally
used to reconstruct an area of the current frame: a vector char-
acterizes the displacement of a block of pixels. The compu-
tational complexity of a block-based motion estimation tech-
nique can be determined by three main factors: the search
algorithm, the cost function evaluation and the search range.
A lot of motion estimation algorithms have been developed to
reduce the complexity of motion estimation with full search.
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Some try to reduce the cost function [6]. Many others are
based on predefined search patterns to reduce the total num-
ber of search points [7, 8].
In this paper, we investigate the use of tangent distance in
a motion estimation framework. Tangent distance was first
introduced by P. Simard et al. in the 90’s [9] and has been
proved to be especially effective in the domain of character
recognition. Because of its insensitivity to small transforma-
tions and thus its capacity to derive classifiers independent
to small variations, this tool has mainly been used in pattern
recognition systems [10, 11, 12, 13]. We can also cite specific
applications on face location and recognition [14] and speech
recognition [15].
This paper is organized as follows. In Section 2, we give a
brief explanation of tangent distance. Then, in Section 3, the
general principle of our algorithm is described followed by a
brief discussion concerning important parameters. Finally, in
Section 4, some results are presented, and concluding remarks
are given in Section 5.

2. TANGENT DISTANCE

As lie operators [16] are known to be effective in detecting
very small degrees of object motions, the tangent distance al-
lows to compare two patterns according to small transforma-
tions. The set of all transformed patterns has highly nonlinear
characteristics, and to obtain a tractable representation, we
consider a linear approximation of the transformation using a
Taylor expansion. Then, given an image I and Ir this image
after a small rotation, we can linearly approximate Ir by:

Ir = I + λr
�Vr (1)

with �Vr the tangent vector of the rotation and λr its contribu-
tion.
We can locally model the set of images of a point (seen as
parametric curve) generated by each basic transformation by
adding the tangent vector to the curve, weighted by a factor,
at this point. This tangent vector derives, in this point, the set
of pattern generated by this transformation. The tangent dis-
tance between two points P and P ′ is equal to the euclidean
distance between the linearization of the parametric curves
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through P and P ′ (see figure 2).
If we now consider a composition of transformations (rota-
tions, translations, etc.), an approximation of Im, transforma-
tion of I , is given by:

Im = I + λ1
�V1 + ... + λi

�Vi (2)

where �Vi is the vector tangent to the ith transformation (fig-
ure 1) and λi represents its contribution.
For a given couple of images (I and J), we do not compare
directly these images, but their approximations Im and Jm,
given by equations:

Im = I + λ1
�V1 + ... + λi

�Vi (3)
Jm = J + λ′

1
�W1 + ... + λ′

i
�Wi (4)

The comparison between the images is then performed by the
minimization of the tangent distance, given by:

min(d(I + λ1
�V1 + ... + λi

�Vi, J + λ′

1
�W1 + ... + λ′

i
�Wi)) (5)

where d(i, j) is the euclidean distance between i and j.
In this minimization scheme, I and J are known, all �Vi and
�Wi are tangent vectors and can be computed numerically or
analytically [17]. On the other hand, all λi are unknown: the
result of the minimization gives their optimal values. This
means that the minimization not only gives a robust compari-
son between two patterns but also computes the proportion of
every transformations applied to make them fit.

Fig. 1. Illustration of tangent vectors. From left to right, the original
image, the tangent vector of a rotation, an horizontal translation, a
vertical translation, an horizontal scale and a vertical scale.

3. GENERAL PRINCIPLE

3.1. Algorithm

The integration of tangent distances in a motion estimation
framework is quite easy: we take a block B of pixels around
the considered pixel in the current frame and compare this
block to some blocks near the position ofB in the next image.
The comparison between blocks is performed using tangent
distance and its minimization determines the block B′ that
best matches with B. The solution of the minimization also
gives the values of λi (equation 5) indicating contributions
of each transformation (translations, rotations, etc.). Then,
the difference between positions of B and B′, gives a first
approximation of the global transformation (t1 in figure 3).
This approximation is improved by considering the values of

Fig. 2. Comparison between P and P
′: [de] is the euclidean dis-

tance. Each 3D curveC1 and C2 represents possible transformations
respectively for P and P

′. T1 and T2 are the linearization of both
curves C1 and C2 in P and P

′. The tangent distance is the distance
between T1 and T2 ([dt]). Nearest points of T1 and T2 correspond
to the approximations of transformations of P and P

′.

λi which give proportions of the other transformations (t2 in
figure 3). By the composition of the two transformations, we
can determine the exact displacement (t in figure 3) of the
considered pixel.
This process allows to test only few positions around the ini-
tial block without decreasing the search range. In our tests we
never exceed 11 positions.
Transformations that have to be included in the computation
depend on the possible movements in the sequence. If the
movement is in the image plan (i.e. 2D), only translations
and rotations are required. If the movement corresponds to
the projection of a 3D motion, it is necessary to include scale
factors. Moreover, in the case of deformable objects, this ap-
proach allows to add various transformations to ensure the
robustness of the estimation. Then, because of the possibility
given by tangent distance to integrate different kind of trans-
formation models, the presented algorithm can be adapted to
various situations.

Fig. 3. The initial block B is compared to other blocks. Using
the tangent distance minimization scheme, the block B

′ is selected
and the transformation is computed. This transformation is given
by the composition of a translation t1 between B and B

′ and the
transformation t2 that makes B and B

′ exactly match.
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3.2. Parameter Influence

Two main parameters must be considered to get optimal re-
sults. The first parameter concerns the preprocessing step and
the second is the geometry of the block.
Computing tangent vectors necessitates a derivation of pat-
terns. As the image is sampled, it must be smoothed to be
derivable. We have smoothed the image using a Gaussian fil-
ter. The choice of the standard deviation σ of the Gaussian
is very important : if σ is too small, the linear approximation
(equation 2) becomes false and the movement is not detected
(figure 4 on left). If σ is too big, the movement is extended
over a too large area (figure 4 on right).
The geometry of the block is also determinant. If the block is
too small, the movement is not detected. On the contrary, if
the block is to big, the movement is spread out.
The Gaussian, the size of blocks and the maximum distance
between the original block and all other blocks need to be ad-
justed to the magnitude of the movement.
These parameters have thus an influence on the quality of the
results, but also an impact on the speed of the algorithm: a too
large Gaussian and, moreover, a too big block, will too much
increase executing time.

Fig. 4. Influence of the smoothing on the motion estimation results.
On left the image was not smoothed, no motion is detected. On
right the image was too much smoothed (Gaussian with σ = 6), the
movement is spread out.

4. RESULTS

Ourmethod has been tested on different image sequences, and
we present the results obtained on three of them. The first one
is a sequence of moving ants, the second one a video mon-
itoring sequence. Results on both sequences can be seen as
optical flows. The last sequence presents a moving and de-
formable stuffed toy.
The first sequence, called “Ant” sequence, shows ants moving
on a flat surface. Each ant has a complex movement: transla-
tion while walking and deformations while moving its head,
abdomen, or antennas. Despite the erratic and highly nonlin-
ear displacements of ants, motions are well estimated by our
approach (see figure 5). Notice that, due to the size of the
blocks, the movement is a bit spread out around ants.
On the second sequence, one man is static, the other one is
moving. Figure 6 shows that the moving man is well de-
tected. The direction of his body is well estimated as well

as the movement of his legs. Best is to notice that our algo-
rithm not only detects the walking man but also its reflect on
the window on right (not easy to see) and the reflection of an-
other person in the center.
On the last sequence, the little stuffed toy is moving and de-
forming in space. To check if the movement is well estimated
we have reconstructed a frame at t using the previous frame
and the motion vectors estimated between frames t and t − 1
using our approach. The real image is shown in figure 7.(a)
and its reconstruction in figure 7.(b). Only the area in the rect-
angle delimited by the two red marks has been reconstructed.
We can see that the reconstruction is quite good, despite an ar-
tifact in front of the head. Another interesting point is that the
reconstruction on the boundaries between the reconstruction
area and the real frame is quite good. The last and important
point is that the leg, which has a non rigid motion, is also well
reconstructed.
All these results show our motion estimation approach is very
robust (“Ant” sequence), able to detect imperceptible motions
(“Window” sequence) and can deal with non rigid displace-
ments (“stuffed toy” sequence).

Fig. 5. Results on “Ant” sequence: all ant motions are well detected.

Fig. 6. Results on “Window” sequence. Walking men motions are
well detected as well as their reflection (on right and center).

5. CONCLUSION

We have proposed an algorithm to estimate motion in images
sequences using tangent distances. This method can also be
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(a)

(b)

Fig. 7. Results on “Stuffed toy” sequence. (a) The original frame
at t. (b) The reconstructed frame (into the rectangle marked by the
two red marks) using (a) and the motions vectors estimated between
frames t − 1 and t. Results are good and the transition between the
reconstruction and the real image is not visible.

used to estimate optical flow in images sequences. Our algo-
rithm takes advantage of tangent distance: many distortions
can be taken into account to make the motion estimation ro-
bust and adapted to the specific context of a sequence, as have
shown our experimental tests. For example, we are currently
integrating an illumination model to be more robust against
high lightening variations. Another interesting point is that
the algorithm can be easily paralleled: at low level, all compu-
tations are quite simple operators (linear algebra), and at high
level, we can estimate the motion of pixels independently. We
are implementing this algorithm on FPGA and plan to im-
prove it to make it work in real time.
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