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ABSTRACT
Online target tracking requires to solve two problems: data associa-
tion and online dynamic estimation. Usually, association effective-
ness is based on prior information and observation category. How-
ever, problems can occur for tracking quite similar targets under the
constraints of missing data and complex motions. The lack in prior
information limits the association performance. To remedy, we pro-
pose a novel method for data association inspired from the evolution
of target’s dynamic model and given by a global minimization of an
energy. The concept amounts to measure the absolute geometric ac-
curacy between features. The main advantage of our approach is that
it is parameterless. We also integrate our method into the classical
particle filter, that leads to what we call the Energetic Particle Filter
(EPF).

Index Terms— Energy minimization, particle filter, missing data,
online tracking, adaptive parametrization.

1. INTRODUCTION

Usually, association effectiveness is based on prior information and
observation category. If we have a lack in prior information, the
association task becomes difficult. Such case can occur when the
observed system is deformed over time, moreover, if no information
about motion is available when we track multiple and quite similar
(even non distinguishable) objects. Difficulties increase if there is
a considerable interval of time between observations and if the ob-
server has no prior information about the motion. Likewise, if we
only observe target positions, it is possible for a measurement to be
equidistant from several targets: all target association probabilities
are relatively the same and it is difficult to associate the good mea-
surement with the good target. As far as, no association method
can handle all the cases illustrated previously. The literature con-
tains some classical approaches for data association: the determinis-
tic approaches and the probabilistic ones. The simplest deterministic
method is the Nearest-Neighbor Standard Filter (NNSF) [1] that se-
lects the closest validate measurement to a predicted target. In some
tracking applications, the color is also exploited and the histogram
intersection technique is used to compute the color histogram dif-
ference between measurements and targets. Unfortunately, the color
metric is not sufficient in many cases: for deformable objects, which
color distribution may differ from one frame to another, or in case
of several quite identical objects. Probabilistic approaches are based
on posterior probability and make an association decision using the
probability error. We can cite the most general one, called Multiple
Hypothesis Tracking [2], for which multiple hypothesis are formed

and propagated, implying the calculation of every possible hypoth-
esis. Another strategy for multiple target tracking is the Joint Prob-
ability Data Association (JPDA) [3] which uses a weighted sum of
all measurements near the predicted state, each weight correspond-
ing to the posterior probability for a measurement to come from a
target. JPDAF provides an optimal data solution in the Bayesian
framework. However, the number of possible hypothesis increases
rapidly with the number of targets.
In this paper, we propose a novel method for data association where
a measurement is associated to a target if the amplitude of its to-
tal energy is minimized. The main advantages of this energy are it
is parameterless and does not require prior knowledges. Only one
information about a target is used: its position. We integrate this
association method in the classical particle filter to achieve the task
of multiple object tracking. Furthermore, the parameters of the dy-
namic model are estimated in an adaptive and automated way by us-
ing a cubic B-Spline interpolation [4]. This combination of the par-
ticle filter with the energy minimization approach, whose dynamic
parameters are updated online each time an observation is available,
leads to the Energetic Particle Filter (EPF). The outline of this pa-
per is as follows. In section 2, we expose the energy minimization
approach, derive its geometrical representation and its mathemati-
cal model. In section 3, we develop the EPF algorithm for multiple
target tracking. The proposed method is then tested on several se-
quences in section 4. Finally, concluding remarks and perspectives
are given in section 5.

2. ENERGYMINIMIZATION APPROACH

We observe a video sequence describing a dynamical scene using
a sensor which can deliver exactly one observation at instant t. It
contains at least one measurement which can be associated with a
specific object or can be a false alarm. Let’s set y = (y1, ..., yM ),
where y is the vector containing the M measurements, also called
observation. Our goal is to associate one measurement per target.
In this paper, we propose an algorithm for data association restricted
to one category of measurement: the position. Furthermore, we af-
firm the total lack of prior information concerning targets: exclu-
sively the two anterior predicted positions are used as input for our
algorithm. We will first give the concept of our approach before
starting its mathematical modeling. If we only consider the linear
translation in one direction, the data association problem is limited
to the computation of the Mahalanobis distance energy. Thus, in case
of complex dynamics such as non linear displacements, oscillatory
motions or non-constant velocities, we incorporate a second energy
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which measures the absolute accuracy between the dynamic features
and indicates how much their parameters are close. Moreover, we
distinguish some dynamic cases, that will be clarified by geometric
descriptions afterward, when we need to improve the data associ-
ation problem by adding a third energy, also called the proximity
energy. We define the energy between the kth target and the j th mea-

surement yj by: E(k, yj) = 1√
3

qP3
l=1 α2

l (El(k, yj))
2, where

αl = 1
P

K
k=1

El(k,yj)
is a weighted factor introduced to sensibly em-

phasize the relative importance attached to the energy quantities El.
Before interpreting each energy, we will explain some notations. If
we consider a target A and a measurement yj available at instant t,
we call (see Figure 1 for illustrations):
• Â(t−2), Â(t−1), Â(t) and Â1(t+1): predictions ofA at t−2,
t − 1, t and t + 1 using the initial dynamic model;
• Â2(t + 1): prediction of A at t + 1 using the updated dynamic
model. In this case, yj is associated with A at instant t and the pa-
rameters of the dynamic model are updated according to yj .

a b c

d e f

Fig. 1. (a-b-e) Intersection surfaces {S1, S2, S}; (c-d) Difference
between the surfaces S1 and S2 extracted from two dynamical mod-
els; (f) Intersection surfaces when two predictions at instant t, Â1

and Â2, are equidistant from yj .
The components of (E(k, yj) are:
1. The Mahalanobis distance energy, E1(k, yj), measures the dis-
tance between a measurement yj available at t and the prediction of
A at (t − 1). This energy is sufficient if the motion is limited to
translations in one direction (case of linear displacements).

E
1(k, yj) =

q
(yj − Â(t − 1))T Σ̂−1

k (yj − Â(t − 1))

Σ̂k: covariance matrix of target k (designed by A in the equation).
2. To consider the case of complex dynamics, such as oscillatory
motions or non-constant velocities, we have added the absolute ac-
curacy evolution energy E2(k, yj). It introduces the notion of the
geometric accuracy between two sets of features whose dynamic
evolutions are different:
• The not updated dynamic model predicts a new state at (t + 1)
without considering the presence of any measurement, i.e. without
updating the parameters of the dynamic model.
• The updated dynamic model considers the association between
measurements and target at t to update its parameters and then pre-
dict new states at (t + 1).
E2(k, yj) extends a numerical estimation of the closeness between
two dynamic models. Our idea aims to evaluate the parameters of
the dynamic model in two steps if the measurement yj arises from a
target or no. We first predict the states Â1(t+1) and Â2(t+1) of the

target. We then determine S1, the intersection surface between the
two circumscribed circles of triangles (Â(t−2), Â(t−1), Â(t)) and
(Â(t−1), Â(t), Â1(t+1)), and S2, the intersection surface between
the two circumscribed circles of triangles (Â(t − 2), Â(t − 1), yj)
and (Â(t − 1), yj , Â2(t + 1)) (see Figures 1.(a-b)).
E2(k, yj) = |S1 − S2| is minimized when the similarity between
both dynamic models is maximized.
A question might be asked: is the component E2 able to handle all
type of motions?
Indeed, E2 evaluates a numerical measure of similarity between dy-
namic models. This measurement depends on the difference between
two surfaces. It is considered as reliable if both positions Â(t) and
yj are on the same side comparing to axis (Ât−2Ât−1), see Fig-
ure 1.c. In Figure 1.d, we show the case where both surfaces S1 and
S2 are quite similar, which implies that E2 is null. This case can
occur when the position of Â(t) and yj are diametrically opposite
or in different side comparing to axis (Ât−2Ât−1). In such cases,
the energy is not a sufficient information source to achieve the task
of association. To compensate this energy, we incorporate a third
energy E3.
3. The proximity evolution energy E3(k, yj) = 1

S
evaluates the

absolute accuracy between the prediction Â(t) and the measurement
yj at instant t, and corresponds to the inverse of the surface S de-
fined by the intersection of the triangles (Â(t−2), Â(t−1), yj) and
(Â(t − 2), Â(t − 1), Â(t)) (see the dotted area of Figure 1.e). In-
creasing S means that the prediction and the measurement at instant
t are close.
Another question could be asked: why using the intersection surface
instead of only calculating the distance between the measurement yj

and the prediction of target’s position at instant t? In Figure 1.f, we
have two predictions at instant t, Â1 and Â2 that are both equidis-
tant from the measurement yj . If we compute the proximity energy
by only measuring distances, we will get that both models have the
same degree of similarity with the initial model defined by the dy-
namic model of points (Â(t − 2), Â(t − 1), yj). This result leads
to a contradiction with the reality. This problem can be explained
by the fact that if they have both the same degree of similarity with
the third dynamic model, we can conclude that their corresponding
targets have the same dynamic. For this reason, we have chosen
to evaluate the similarity by computing the intersection surface be-
tween triangles. We can remark in Figure 1.f that these intersection
surfaces are very different, which leads to a different measure in the
degree of similarity. Finally, yj is associated to target k if its energy
magnitude is minimized:

Dyj→k =

8<
: min

k=1,...,K

0
@ 1√

3

vuut 3X
l=1

α2
l E

l(k, yj)2

1
A

9=
; (1)

with 0 ≤ αl ≤ 1 and 0 ≤ E(k, yj) ≤ 1.
We have described a novel approach for data association based on
the minimization of an energy magnitude whose components are ex-
tracted from geometrical representations constructed with measure-
ments, previous states and predictions. The purpose of choosing a
geometrical definition for these energies refers to:
• show the geometrical continuity of the system between predictions
and previous states using two different dynamic models;
•measure the similarity between predictions, at a particular time for
the same object, using two different dynamic models, that logically
must be quite similar because they represent the same system.
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3. ENERGETIC PARTICLE FILTER (EPF)

Given a video sequence depicting K moving targets, the tracking
consists in estimating their states Xk,t in frame t. Particle filter
is an inference process which can be considered as a generaliza-
tion of the Kalman filter [5]. It aims at estimating the unknown
states Xk,t from a set of noisy observations that occur sequentially,
Y1:t = (y1, ..., yt). The two important components of this approach
are the state transition and observation models whose most general
forms can respectively be given by Xk,t = Fk,t(Xk,t−1, Uk,t) and
Yk,t = Gk,t(Xk,t, Vk,t). Uk,t is the system noise, Fk,t the kine-
matics of the kth target, Vk,t the observation noise, and Gk,t the ob-
servation model. In this paper, we combine the particle filter with
the energy minimization approach which leads to the Energetic Par-
ticle Filter (EPF). This filter is a global framework for multiple tar-
get tracking under the restrictions of lack in prior information about
motion and measurements only corresponding to positions. The al-
gorithm of EPF proceeds as follows:
1. Compute E(k, yj) for target candidates so that yj falls in their
validation regions. Associate yj with k if E(k, yj) is minimized.
If yj is not included in any validation region, consider it as clutter.
The validation region is an ellipsoid that contains a given probabil-
ity mass under the Gaussian assumption. Its center is the mean of
the target. The minor and major axes are respectively given by the
largest and smallest eigenvalues of the covariance matrix and their
directions by the corresponding eigenvectors.
2. If yj is generated by target k, estimate the new parameters of the
dynamic model by using the cubic B-spline which control points are
extracted from the available observations [4].
3. For k = 1...K, n = 1...N , initialize the samples for target states

Sk,0 =
n

s
(n)
k,0 , w

(n)
k,0

o
where s

(n)
k,0 ∼ P (Xk,0) and w

(n)
k,0 = 1

N
.

4. Generate new samples s̃n
k,t from P (Xk,t|Xk,t−1 = sn

k,t−1, yj).
5. Compute and normalize the particle weights:

w̃n
k,t = wn

k,t−1

P (s̃n
k,t|sn

k,t−1
)P (yt|s̃n

k,t)

f(s̃n
k,t

|sn
k,t−1

,yt)
and wn

k,t =
w̃n

k,t
P

N
n=1

w̃n
k,t

.

6. Approximate the density function by
PN

n=1 wn
k,tδsn

k,t
.

It has been shown that the variance of the particle weights always in-
creases over time, which causes a weight degeneracy. To reduce this
effect, we use the multinomial resampling approach [6] to resample
the particle weights in an adaptive way when their effective number
estimated by Neff =

1
P

N
n=1

(wn
k,t

)2
is under a given threshold.

4. EXPERIMENTAL RESULTS

Van-Plane test: Two measurements {M1, M2} are available at t,
each one is a position in the target space. The first row in Figure 2
contains the frames at {t−2, t−1, t} in which two targets {T1, T2},
the van and the plane, are present. If we look at the position of these
measurements on the frame at t (right image in Figure 2), we ob-
serve that M1 is closer to T1 and M2 to T2. In the second and
third rows, we show the predictions of both targets by evaluating
the two different dynamic models. We point out that the horizon-
tal and the vertical axis of the frame are represented by the y-axis
and x-axis. To associate these measurements, we first compute the
Mahalanobis distance energy and get {α1E

1(T1, M2) = 0.32} <

{α1E
1(T2, M2) = 0.68} which means that the distance from M2

to T1 is smallest than the one fromM2 to T2. Hence, the NNSF as-
sociation method would associateM2 to T1 which is a contradiction
with the reality. To remedy, we compute the energiesE2 andE3 and

obtain E(T1, M1) < E(T2, M1) and E(T2, M2) < E(T1, M2),
implying that the energies magnitude are minimized ifM1 andM2

are respectively associated to T1 and T2 (see equations below).

E(T1, M1) =
1√
3

p
(0.31)2 + (0.02)2 + (0.34)2 = 0.27

E(T1, M2) =
1√
3

q
(0.32)2 + (0.72)2 + (0.86)2 = 0.68

E(T2, M1) =
1√
3

p
(0.69)2 + (0.98)2 + (0.66)2 = 0.79

E(T2, M2) =
1√
3

q
(0.68)2 + (0.28)2 + (0.14)2 = 0.43

Fig. 2. Van Plane test. First row: frames at {t−2, t−1, t}. The 2nd
and 3rd rows show the positions of both targets at different instants.

Fig. 3. Walking men test. Frames at {t − 2, t − 1, t, t + 1}.
Walking men test: Figure 3 shows from left to right the frames at
{t−2, t−1, t, t+1}. At t−2, three men are walking close. At t−1,
two men (T2 and T3) continue walking in the same direction, while
the third one (T1) takes the opposite direction. The available obser-
vation at t contains three measurements corresponding to positions
in the target space. At t, we observe a partial occlusion between two
walking men. We notice that the observed positions of the cross men
are very close. At t + 1, these men change their directions.

M1 M2 M3 E(Ti, Mj)

T1

0.144

0.03

0

0.70

0.16

0.5

0.63

0.0037

0

0.085 0.51 0.363

T2

0.41

0.82

0

0.15

0.22

0.5

0.21

0.76

0

0.53 0.32 0.455

T3

0.444

0.16

0

0.15

0.62

0

0.16

0.235

0

0.47 0.37 0.16

Table 1. Each column represents the computation of energy com-
ponents when a measurement Mj is associated to a target Ti. The
second part of this table shows their energy magnitude.
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We remark from Table 1 that the measurement M2 is equidistant
from targets T2 and T3 (α1E

1(T2, M2) = α1E
1(T3, M2) = 0.15).

We also remark that most of time the third energy is null, this effect
is due to the presence of a linear displacement (motion limited to a
displacement in the directions x and y). Once the energies are com-
puted, the energy magnitude E(Ti, Mj) is minimized when mea-
surementMj is associated to target Ti, see the column ofE(Ti, Mj)
in Table 1. Despite the change in illumination, the measurements
were correctly associated to targets by using the approach of energy
minimization.
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Fig. 4. Ant sequence. (a) Frames at {t − 2, t − 1, t, t + 1}; (b)
Tracking result obtained with EPF; (c) REC curves.

Ant sequence test: In this sequence, the ants are quite similar even
non-distinguishable and characterized by the same gray level distri-
bution. The sensor, at t, provides an observation containing six mea-
surements corresponding to positions in the (x, y) space. In such
scene, only the motion information is used. We remark from Fig-
ure 4 that their displacement is erratic with non-constant velocity.
They change their direction, accelerate, decelerate, stop moving, do
rotation around their axis, etc. Figure 4.a shows the acquisitions at
{t − 2, t − 1, t, t + 1} corresponding to frames {10, 25, 35, 45}.
Notice that the frame at t is the available observation. To track these
ants under the assumption of missing data, we only use five frames
from the sequence as observations without having any prior knowl-
edge about the motion or the trajectory in the interval of time that
separates two successive observations.

M1 M2 M3 M4 M5 M6 E(Ti, Mj)

T1

6.5

1.5

0.03

47.2

1.8

45.8

25.8

1.4

0.8

43.9

1.1

14.1

48.7

11.3

48.1

46.6

1.1

43.2
3.9 38.1 14.9 26.7 40.1 36.7

T2

22.5

3.1

6.8

5.8

1.2

0.01

21.4

3.1

24.6

6.5

9.6

0.2

2.5

54.5

14.6

12.1

1.6

13.6
13.7 3.4 18.9 6.7 32.6 10.5

T3

15.1

14.2

22.2

24.9

0.2

8.5

4.1

0.3

1.8

17.7

0.2

5.6

23.7

1.3

4.7

19.7

0.1

24.5
17.5 15.2 2.6 10.8 14 18.1

T4

21.4

6.6

38.8

1.7

2.2

14.8

21.6

2.7

27.8

9.4

0.3

0.7

5.4

24.1

17.8

10.2

4.4

12.1
25.9 8.7 20.4 5.4 17.6 9.5

T5

18.3

74.4

8.5

6.1

85.8

10.5

17.9

92.2

12.6

12.2

96.2

3.2

9.3

6.9

4.05

5.9

92.4

6.2
44.4 50.1 54.7 56.1 7.1 53.6

T6

16.1

0.3

23.7

13.5

0.25

20.1

9.3

0.2

32.4

10.9

1.1

76.3

10.3

1.9

10.8

5.5

0.4

0.35
16.6 13.9 19.4 44.5 8.7 3.2

Table 2. Computation of the energy components when a measure-
mentMj is associated to a target Ti and their energy magnitude.

Table 2 contains the numerical values of the energy components
when a measurement Mj is associated to a target Ti. The NNSF
method associates measurements {M2, M4, M5} respectively to ob-
servations {T4, T2, T2} which leads to a contradiction with the re-
ality (see α1E

1(Ti, Mj) in Table 2). We remark from Table 2 that

α2E
2(T2, M2) < α2E

2(T4, M2) and
α3E

3(T2, M2) < α3E
3(T4, M2)which compensates the error given

by α1E
1(T2, M2). Finally, E(Ti, M2) is minimized when M2 is

associated with target T2. Lets take another example to show the
necessity of using the energy �E3 in our formulation. If we only use
the energies α1E

1(Ti, Mj) and α2E
2(k, Mi) to associate data, we

will get E(T6, M5) < E(T5, M5) and the measurement M5 will
be associated with target T6 which is wrong. We can remark from
Table 2 that α3E

3(T5, M5) < α3E
3(T6, M5) which compensates

the other energy error. Finally, we observe that each measurement
is well associated with its corresponding target. We notice that our
approach is not a time-consumer. In Matlab, the total time of com-
putation of all these energies is 0.25 seconds. We apply the EPF to
estimate their mean, X̂i

t , which represents their translation vector.
The dotted lines in Figure 4.b show the estimated mean for each ant.
Figure 4.c shows the Regression Error Characteristic (REC) curve
for each ant: the error rate is on the x-axis and the accuracy is on the
y-axis. Accuracy is defined as the percentage of points that are fit
within the tolerance. The error here is defined as the difference be-
tween the actual value and its prediction. As the error increases, the
accuracy increases. The accuracy goes to 1 when the error becomes
large enough.

5. CONCLUSION

In this paper, we have proposed a new method for data association
based on an energy minimization which can handle complex mo-
tions and highly non-linear systems, and deals with the lack in prior
knowledge. The main advantages of our method is that it requires
only one information, the position, and it is not a time consumer.
The geometric illustration of energy components allows to measure
the accuracy between two dynamic models and to define their degree
of similarity. The integration of this energy minimization approach
for data association in the particle filter, leads to our Energetic Par-
ticle Filter and contributes to a new framework for multiple object
tracking. As a perspective, we suggest to add some energy compo-
nents, as necessary, to handle the case of multimodal observations
and to integrate them within the particle filter to build a tracking
framework for multimodal observations.
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