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ABSTRACT

Tracking highly deforming structures in space and time arises

in numerous applications in computer vision. Static Models

are often referred to as linear combinations of a mean model

and modes of variation learned from training examples. In

Dynamic Modeling, the shape is represented as a function of

shapes at previous time steps. In this paper, we introduce a

novel technique that uses the spatial and the temporal infor-

mation on the object deformation. We reformulate tracking

as a high order time series prediction mechanism that adapts

itself on-line to the newest results. Samples (toward dimen-

sionality reduction) are represented in an orthogonal basis,

and are introduced in an auto-regressive model that is deter-

mined through an optimization process in appropriate metric

spaces. Toward capturing evolving deformations as well as

cases that have not been part of the learning stage, a process

that updates on-line both the orthogonal basis decomposition

and the parameters of the autoregressive model is proposed.

Experimental results with a nonstationary dynamic system

prove adaptive AR models give better results than both sta-

tionary models and models learned over the whole sequence.

Index Terms— Tracking, Segmentation, autoregressive

1. INTRODUCTION

Motion perception is a fundamental task of biological vision,

with motion estimation and tracking being the most popu-

lar and well-addressed applications. To this end, given a se-

quence of images, one would like to recover the 2D temporal

position of objects of interest. These applications often serve

as input to high-level vision tasks like 3D reconstruction.

Tracking non-rigid objects is a task that has gained par-

ticular attention in computational vision, in particular with

Kalman Snakes [1] and multiple hypotheses trackers [2, 3].

Constraints/models are imposed in the temporal evolution of

the target and prediction mechanisms are used to perform

tracking. Shape tracking with autoregressive dynamic mod-

els is a step forward in this direction, with different shape

spaces being investigated. In [4], a first-order model is used

to track cardiac cycles in echocardiographic sequences, while

in [5] Fourier descriptors are used to describe shapes, and a

linear dynamic model tracks their evolution on time. Tracking

articulated structures is a well suited problem for autoregres-

sive models and therefore in [6] a method based on a linear

dynamic model is proposed. In [7], a static autoregressive

model was developed to produce a prior for levelset-based

segmentation. The main limitation of such models refers to

their time-invariant nature. Consequently, either a complex

heuristic is developed to mix models, or Markov fields are

introduced for multimodality.

To address this issue, adaptive dynamic models such as

adaptive Kalman Filter [8] integrate a Kalman Filter that esti-

mates additive noise properties (mean and variance) to an AR

model. Except for the noise properties, no adaption is made

for the signal itself if its own properties change (e.g. new

properties cannot be captured by the current feature space)

or if the system dynamism (the regression) is modified. On

the other hand, in the context of classification and learning,

adaptive feature spaces such as adaptive Principal Component

Analysis (PCA) [9][10] were developed to take into account

the newest results to estimate the feature space. Neverthe-

less, even if the feature space is adapted to the most recent

exemplars, in the context of segmentation and tracking, one

also needs an adaptive predictive model to relate segmenta-

tion results across time, and to adapt the prediction scheme if

changes in the dynamic system occur.

In this paper, we address such limitations and determine

a predictive model that is incrementally adapted to changes

both in the system dynamics (and not only the noise proper-

ties) and in the feature space. For that purpose, we propose an

on-line technique for tracking based on higher order autore-

gressive models. Such a technique is based on dimension-

ality reduction of the parameters space using an orthogonal

decomposition of the training set. Then, a linear autoregres-

sive model is built in this space capable of predicting current

states from the prior ones. Such a model and its feature space

(the orthogonal decomposition of shapes) are updated on-line

using new evidence. To this end, a proper geometric distance

is used in a robust framework to optimize the parameters of

the model.

The reminder of this paper is organized in the following

fashion: in [SEC. (2)] we briefly present autoregressive mod-

els. Dimensionality reduction, and on-line learning are part of

section [SEC. (3)], while tracking is presented in [SEC. (4)].

Results and discussion conclude the paper.
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2. LINEAR AUTOREGRESSIVE MODELS

Time series models are very popular in a number of domains

like signal processing. Let us assume a set of temporal ob-

servations Y = {Yt; t ∈ [0, T ]}, where each observation

Yt ∈ Ω is a column vector of the N -dimension observation

space Ω. Linear autoregressive models - of order k - con-

sist of expressing the current observation as a combination of

previous samples perturbed by some noise model:

Yt = H
[
YT

t−1 YT
t−2 ... YT

t−k

]T
+ η(μ, Σ) (1)

with N -by-kN matrix H called the prediction matrix and

η(μ,Σ) being the noise model vector. For any matrix M,

MT denotes the matrix transpose. In the most general case,

one assumes that the input variable Y is defined in a high-

dimensional space, and therefore some dimensionality reduc-

tion is to be performed. Without loss of generality, we as-

sume either a linear or non-linear operator φ() (defined later

in [SEC. (3.1)]) defines new observations of lower dimen-

sion X = φ(Y). We further assume that such an operator is

invertible, or otherwise stated: from a feature vector X one

recovers the original observation Y. In that case one restates

the autoregressive model in a lower dimensional space, and

[EQ. (1)] becomes:

Xt = Hφ

[
XT

t−1 XT
t−2 ... XT

t−k

]T
+ ηφ(μ, Σ) (2)

The estimation of such a model is done from a set of training

examples and robust regression. Let us assume that T >>
k observations are available. Once such observations have

gone through dimensionality reduction, we obtain an over-

constrained linear system written:

∀ t ∈ [|k, T |], Xt ← X̂t = Hφ

[
XT

t−1 XT
t−2 ... XT

t−k

]T
(3)

The unknown parameters of such an over-constrained system

is determined through a robust least square minimization:

Hφ = argminH

{
T∑

t=k

ρφ Xt, X̂t

}
(4)

where X̂t is the Hφ-predicted state vector, and ρφ is an er-

ror metric, in the observation space. Since the reduced space

is potentially highly non-uniform (in the case of PCA, this

means the variations along one mode are larger than the oth-

ers), performing the minimization in the observation space

greatly reduces the prediction error. The Euler-Lagrange equa-

tions of such a system lead to a linear problem that is solved in

a straightforward fashion. The number of constraints used in

such a procedure is determined off-line using the Schwartz’s

bayesian criterion.

The choice concerning ρφ is described in [SEC. (3.2)],

and depends on the shape representation that is selected. Once

such a metric has been defined and an important number of

samples is present, one obtains the prediction matrix through

mathematical inference.

Fig. 1. Registered training examples used for initial Principal

Components Analysis.

3. SHAPE REPRESENTATION & METRIC

3.1. Contour Representation in a Low Dimension Space

When no topology constrains are given, implicit methods are

popular shape representations. Let us consider a number of

training examples to track s = {si, i ∈ [1, n]}. In [11] a

distance transform representation ψi is considered for a given

shape si, as explained in [EQ. (5)]:

∀x ∈ Ω, ψi(x) =

⎧⎪⎨
⎪⎩

0, x ∈ si

+D(x, si) > 0, x ∈ Ωi

−D(x, si) < 0, x ∈ [Ω − Ωi]

(5)

where Ω defines the image domain, and D(x, si) the Euclid-

ean distance between point x ∈ Ω and the exemplar’s contour

si. We call abusively ”shape” the distance function ψ. Global

registration between shapes is now performed by determin-

ing the affine transformation A that minimizes the integral

of squared difference between the alignment shape’s distance

function and the reference distance function. The resulting

aligned function is then represented by a column vector Yi of

dimension N after discretizing the image domain Ω with N
control points.

Since N is usually too large for the computation of Hφ

in [EQ. (4)], Principal Component Analysis (PCA) is applied

for an efficient dimensionality reduction. PCA refers to a lin-

ear transformation of variables that retains - for a given num-

ber m of operators - the largest amount of variation within

the training data. Without loss of generality, a zero mean as-

sumption is considered for the {Yi} by estimating the mean

vector Y and subtracting it from the training samples {Yi}.

The N -by-N covariance matrix Σ =
∑n

i=1 YiYT
i associated

to the n training vectors Yi is used for an Eigendecomposi-

tion. The N Eigenvectors Uq form an orthonormal basis onto

which the vectors Yi are projected. Only the m Eigenvectors

associated to the highest Eignvalues are kept, so that the op-

erator φ of [SEC. (2)] is defined by the affine transformation

A and the projection from the N -dimension space to the m
major Eigenvectors, and is invertible if one approximates the

N −m smallest Eigenvalues by 0. The projected vector φ(Y)
is defined by the coefficients Λ = {λq}q=1..m so that:

Yi = A(Y) +
m∑

q=1

λq Uq . (6)

Let us note X the feature vector [A, Λ] related to Y.
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3.2. Batch Learning & Euclidean Distance Metric

PCA decreases the problem’s dimensionality leading to a highly

non-uniform feature space (for the range of translation com-

ponent is far superior to the one of the scale). In order to

overcome such a limitation, we propose to use a metric de-

fined in the original space (i.e. the observation space Ω) to

recover the prediction mechanism in the reduced space (i.e.

affine transformation from [SEC. (2)] and linear factors from

[EQ. (6)]). The simplest metric between two level-sets is the

L2 norm between the two distance functions that correspond

to the observation Yt and the prediction Ŷt.

ρφ(Xt, X̂t) =

∫
Ω

Yt(x) − Ŷt(x)
2

dx (7)

refers to a well behaved distance between observations, and

predictions and implicitly accounts for the range of parame-

ters of the autoregressive model. This guarantees that the

feature space and autoregressive models are optimum for the

L2 norm for the training set. However, in order to capture

changes in shape or varying regression, an explicit on-the-fly

update scheme is required.

Once new observations have been introduced to the process,

the prediction matrix as well as the orthogonal basis are to be

updated. Incremental principal component analysis is used

for the basis, while an exponential forgetting method is more

suitable for the prediction matrix.

4. ON-LINE ADAPTATION OF THE MODEL

4.1. Adaptation of the Orthogonal Basis using Incremen-
tal PCA

Incremental PCA[9, 10] consists of adding the latest observa-

tion to the PCA learning set. Thus, a new feature space is to

be used to represent the state decomposition X. Using these

new variation modes, and the corrected state X̂t, the transi-

tion model is then updated and ready to be used to predict the

following state Xt+1. The method presented in [9] can be

summarized as follows: given a PCA at time t-1, mean Yt−1,

a set of eigenvectors Ut−1 = [ui], and their corresponding

eigenvalues Dt−1 = diag (d1, d2, ...), given a new state Yt,

the PCA is updated at time t starting by the mean:

Yt =
(t − 1)Yt−1 + Yt

t
. (8)

The eigenvector matrix is updated in a similar way (details

can be found in [9]).

4.2. Adaptation of the Predictive Model

Once the prediction matrix has been estimated, new obser-

vations are introduced in the system toward decreasing the

prediction error. To this end, one would like to find the lowest

potential of

ET (Hφ) = minHφ

{
T∑

t=k

ρφ(Xt,Hφ [Xt−1 Xt−2 ... Xt−k])

}
(9)

prior method (1) Stationary AR (2) Adaptive AR

(a)
correctly seg. 95.20 %

under-seg. 2.76 %

over-seg. 2.03 %

correctly seg. 96.19 %

under-seg. 2.32 %

over-seg. 1.49 %

(b) failed

correctly seg. 96.66 %

under-seg. 2.08 %

over-seg. 1.26 %

(c) failed

correctly seg. 96.04 %

under-seg. 1.47 %

over-seg. 2.48 %

Table 1. Percentage of correctly segmented, oversegmented

and undersegmented pixels for diverse prior, same energy.

Method (1) uses the stationary AR, learned from the first

frames. Method (2) uses the Adaptive AR described in this

paper. Dataset (a) is the original dataset. Dataset(b) is the

original dataset with a horizontal occlusion, and Dataset (c)

presents a vertical occlusion.

In [12], the result is obtained by dividing the sum of squares

into blocks, solving the problem for the first block and using

this result as initialization once the following block is added

to the previous block. Unlike the method presented here, [12]

solved the Gauss-Newton iterations using Extended Kalman

Filter for nonlinear measures E(H, μ,Σ). Experiments have

shown that few (a couple of dozen) Gauss-Newton iterations

are required to achieve far better results than a simple time-

invariant dynamic model. For non-linear time processes, the

local approximation of (HT+1, μT+1,ΣT+1) may not well

correspond to the state transition in a very early time step.

For that reason, exponential forgetting is introduced by multi-

plying the sum’s terms in [EQ. (9)] with exponential weights

wt = e−t/τ , where τ is the exponential forgetting window

size. The smaller τ the more reactive but also the more sensi-

tive to noise is the non-stationary autoregressive model.

5. RESULTS & DISCUSSION

5.1. Comparison with stationary AR models

For comparison purposes we use the same dataset with and

without digital occlusions, which shows a man silhouette walk-

ing and then running, and test different priors for level-sets

[13] evolving according to the same energy. This energy cor-

responds to the sum of a data-driven term (a histogram-based

Chan & Vese functional [14]), and a term associated to the

shape prior provided by the dynamic model. The silhouette

moves in front of a uniform light colored background so that

segmentation errors do not interfere (one is not interested in

the segmentation quality so much as in the dynamic system

itself). Furthermore, to properly test the model adaptability,

the system dynamic has to change; therefore the silhouette

walks then runs. The first experiment consists in training

the AR-PCA model on the whole sequence (58 frames); this

technique loose track of the silhouette in all three cases (un-

occluded, vertical occlusion and horizontal occlusion). The

second experiment compares the results (see [TABLE (1)])
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(a)

(b)

Fig. 2. (a) Vertical and (b) horizontal occlusions added to the

original dataset

between the stationary AR model and the adaptive model de-

scribed in the paper, when both are initialized with the first

18 frames. The stationary model learns the dynamic of the

walking pace, but is unable to sustain the dynamic changes

when the silhouette starts to run. On the contrary, the adap-

tive model learns these new dynamic on-line, and is able to

make correct predictions. This proves the non-stationary AR

model is more suitable to this problem than stationary models

and even models trained on the whole sequence.

5.2. Robustness to occlusion

The main drawback one expects from the locally adaptive

method is the potential accumulation of errors. To test that,

we introduce digital occlusions, see [FIG (2)] (one horizon-

tal occlusion that covers one third of the character during 20

frames, and then one vertical of the same width as the char-

acter) of the background mean color, and run the tracking

scheme with stationary and adaptive priors. Once again, the

results demonstrate that the adaptive model sustains these oc-

clusions. Nevertheless, for larger occlusions, errors accumu-

late and the tracking is lost.

5.3. Discussion

While using available technology, the non-stationary approach

totally changes the scope of AR models for shape priors. The

present method benefits from the same advantages as station-

ary models, described in [7], but does not rely on any station-

ary assumptions. Datasets with time-varying dynamic, that

stationary ARs are not able to track, are now successfully

processed by the locally adaptive AR model. Furthermore, to

some extent, the non-stationary models handle occlusions and

missing data. To sustain larger occlusions, one might think of

an occlusion detection scheme and a special heuristic to han-

dle them to put the adaptation of the model on hold. Another

possibility to increase robustness and reactivity, with the same

Gaussian noise assumption, is to use the framework provided

by Kalman Filter. Furthermore, in the case of occlusions,

when the Gaussian assumption does not hold, one might be

tempted to use a much heavier nonparametric representation

for the distribution, such as Particle Filtering. A last interest-

ing perspective might also be to incorporate the quality of the

segmentation into the on-line learning (in [SEC. (4)]) to favor

the time steps that gave the best results.

6. REFERENCES

[1] D. Terzopoulos and R. Szeliski, “Tracking with Kalman

Snakes,” in Active Vision, A. Blake and A. Yuille, Eds.,

pp. 3–20. MIT Press, 1992.

[2] M. Isard and A. Blake, “Contour Tracking by Stochastic

Propagation of Conditional Density,” in ECCV, 1996,

vol. I, pp. 343–356.

[3] K. Toyama and A. Blake, “Probabilistic Tracking in a

Metric Space,” in ICCV, 2001, pp. 50–59.

[4] J. C. Nascimento, J. S. Marques, and J. M. Sanches, “Es-

timation of cardiac phases in echographic images using

multiple models.,” in ICIP (2), 2003, pp. 149–152.

[5] C.-B. Liu and N. Ahuja, “A model for dynamic shape

and its applications,” in CVPR (2), 2004, pp. 129–134.

[6] A. Agarwal and B. Triggs, “Tracking articulated motion

using a mixture of autoregressive models,” in ECCV,

Prague, May 2004, pp. III 54–65.

[7] D. Cremers, “Dynamical statistical shape priors for level

set-based tracking,” PAMI, vol. 28, no. 8, pp. 1262–

1273, August 2006.

[8] G. Doblinger, “An adaptive kalman filter for the en-

hancement of noisy ar signals,” 1998.

[9] P. Hall and R. Martin, “Incremental eigenanalysis for

classification,” in Proc. British Machine Vision Confer-
ence, 1998, vol. 1, pp. 286–295.

[10] Y. Li, “On incremental and robust subspace learning,”

Pattern Recognition, vol. 37, no. 7, pp. 1509–1518,

2004.

[11] N. Paragios, M. Rousson, and V. Ramesh, “Matching

Distance Functions: A Shape-to-Area Variational Ap-

proach for Global-to-Local Registration,” in ECCV,

2002, pp. II:775–790.

[12] D. P. Bertsekas, “Incremental least squares methods and

the extended kalman filter,” SIAM J. on Optimization,

vol. 6, no. 3, pp. 807–822, 1996.

[13] S. Osher and N. Paragios, Geometric Level Set Meth-
ods in Imaging, Vision and Graphics, Springer Verlag,

2003.

[14] T. Chan, B. Sandberg, and L. Vese, “Active Contours

without Edges for Vector-Valued Images,” Journal of
Visual Communication and Image Representations, vol.

2, pp. 130–141, 2000.

I - 512


