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ABSTRACT

This paper presents a probabilistic framework for computing cor-
respondences and fundamental matrix in the structure from motion
problem. Inspired by Moisan and Stival [1], we suggest using an
a contrario model, which is a good answer to threshold problems
in the robust filtering context. Contrary to most existing algorithms
where perceptual correspondence setting and geometry evaluation
are independent steps, the proposed algorithm is an all-in-one ap-
proach. We show that it is robust to repeated patterns which are usu-
ally difficult to unambiguously match and thus raise many problems
in the fundamental matrix estimation.

Index Terms— Fundamental matrix, probabilistic model, re-
peated patterns.

1. INTRODUCTION

Structure from motion analysis in video streams aims at estimat-
ing the camera pose and the 3D structure of the scene. Evaluating
the fundamental matrix between two views, as explained by Hartley
and Zisserman [2], is often one of the very first steps. Most algo-
rithms proceed with previously matched points to estimate the fun-
damental matrix. Unfortunately, these algorithms are very sensitive
to incorrectly tracked features and robust filtering methods such as
RANSAC [3] have to be used to select coherent matches.

1.1. RANSAC: limitations and solutions

RANSAC-like methods involve several thresholds to choose whether
a match is correct with respect to the estimated model or not. Setting
these thresholds is quite touchy, since they depend on many features
such as scene contrast, image quality, matching accuracy. . .

Statistical approaches attempt to address these difficulties. For
instance, instead of just classifying point matches between outliers
and inliers by thresholding the size of the consensus set, Torr and
Zisserman [4] maximise the likelihood of the consensus set in a prob-
abilistic model that involves the precision of the inliers. To get rid
of parameters, Moisan and Stival [1] have proposed an a contrario
model (first introduced in a series of articles by Desolneux, Moisan
and Morel, see e.g. [5]), dedicated to the estimation of the funda-
mental matrix, that outperforms classical RANSAC.

1.2. The challenge of ambiguous correspondences

In these algorithms, correspondences are generated by using local
patches similarities. They are therefore unreliable (from the epipo-
lar geometry point of view) when confronted with repeated patterns,
and the fundamental matrix estimation is definitely spoilt by these
wrong matches. Moreover, RANSAC-based algorithms do not pay

attention to the quality of the local patch similarity. Both geomet-
ric and similarity constraints should be used to select those correct
matches on which the matrix estimation is performed. Domke and
Aloimonos [6] present a solution which consists in establishing an a
priori model for the distributions of correspondences, computed for
every image pixels. The drawback of this approach is its heavy com-
putational cost. Dellaert et al. [7] propose a promising EM algorithm
to assign correspondences between points of interest, but do not take
into account local patches.

1.3. Contributions

While Moisan and Stival’s model requires a set of matched points
between the views, we present here an a contrario model dedicated
to the case where correspondences are unknown. It allows us to si-
multaneously match interest points and to compute the fundamental
matrix while weighting the role of the points with respect to the qual-
ity of their matching. Our contribution consists in setting up a model
which has been sketched out in [1], specifying its implementation
and in validating it. Contrary to [6], we keep a reasonable computa-
tional burden. We obtain better results than state-of-the-art methods
in scenes featuring repeated patterns such as textures. Experiments
prove that the number of inliers noticeably increases, as well as the
precision of the fundamental matrix estimation.

2. AN A CONTRARIO MODEL FOR FUNDAMENTAL
MATRIX ESTIMATION WITHOUT PRIOR KNOWLEDGE

This section is a digest of the theory leading to the proposed a con-
trario model. We take our inspiration from [1].

2.1. Motivations and notations

The problem at hand is to estimate the fundamental matrix between
two views, based on two lists of points of interest (POI, given with
a local descriptor), one list for each of the two images. Let us recall
that matches between POI are here unknown and of course have to
fulfil the epipolar constraints.

Let us give some notations. A collection S1 (resp. S2) of POI
is given in image 1 (resp. image 2), des(m) is a local descriptor
of a small region around POI m, and a match between POI is a
pair (m1, m2), where m1 ∈ S1 and m2 ∈ S2. In what follows,
mi denotes a POI as well as its homogeneous coordinates.

Suppose that image 1 and image 2 are linked through a fun-
damental matrix F . Constraints on matches (m1, m2) between POI
are twofold: 1) the epipolar line Fm1 is near m2 and vice versa, and
2) descriptors des(m1) and des(m2) are alike (up to the geometry
and the possible colorimetry change between the two views.) On the
one hand, constraint 1 alone could enable a match between two POI
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that satisfy the epipolar constraint “by chance” but actually do not
correspond to the same 3D point. On the other hand, constraint 2
reinforces the possibility that m1 and m2 actually correspond to the
same 3D point.

Let us introduce a probability law for each constraint:

1) 2D′
A′ d(m2, Fm1) where A′ is the area of image 2 domain, D′ its

diameter, and d the euclidean distance (this definition can be easily
made symetric.) Simple geometrical reasoning shows that this is the
probability law of d(m2, Fm1) when the m2’s are supposed to be
uniformly distributed.
2) P (c) = Pr(δ(des(m1), des(m2)) < c), where δ is some metric
between local descriptors and P (c) is simply estimated by counting
over the whole set of candidate matches (a subset of S1 × S2).

2.2. A contrario model

Let us now consider a set S ⊂ S1 × S2 (cardinality k) of pairs of
POI (mi

1, m
i
2), and suppose that the fundamental matrix F has been

estimated upon 7 pairs among S. Let us also denote

α = max
i∈{1,k}

2D′/A′ · d(mi
2, Fmi

1) (1)

and

c = max
i∈{1,k}

δ(des(mi
1), des(mi

2)). (2)

Probabilities in the a contrario model M are defined by the fol-
lowing assumption. The k − 7 points that are not involved in the
computation of F are independent, as well as the k descriptors, and
the distances between POI and descriptors are supposed to follow the
probability laws above. This is called an a contrario model because
if S is made of pairs of POI that are true matches (that is, matches
between two POI corresponding to the same 3D point), these as-
sumptions are surely not valid.

We then compute the probability of S under M as

PM(S|F ) := PM
“
∀ i ∈ {1, . . . , k}, 2D′

A′
d(mi

2, Fmi
1) ≤ α

and δ(des(mi
1), des(mi

2)) ≤ c
”

= αk−7P (c)k.

The lower PM(S|F ), the less likely it is that S is made of POI
that match “just by chance”. A better explanation is that they obey
the 3D geometry.

2.3. Meaningfulness of a group

Since the probability above does not permit to easily compare groups
of matches with different cardinality, the following notion is intro-
duced (inspired by Prop. 2 in [1]):

Definition 1. S is ε-meaningful if

εS(α, c, k, n) := 3(n − 7)

 
n

k

! 
k

7

!
αk−7P (c)k ≤ ε,

with α, c, k defined as above, and n the cardinality of the subset of
S1 × S2 in which reliable groups of matches are sought.

There are
`

n
k

´
such S groups, (n−7) choices for k (which values

are between 8 and n),
`

k
7

´
choices for the 7 pairs to estimate the

fundamental matrix, and each 7-uplet gives (up to) 3 fundamental

matrices. There are in the end 3(n−7)
`

n
k

´`
k
7

´
fundamental matrices

to test while enumerating the subsets S.

Therefore, εS is an upper bound to the expected number of groups
like S which could be observed according to the a contrario model:
if this expectation is lower than 1, we can be sure that the considered
set is not observed by chance and assume having found a solution.
εS makes a compromise between the quality of individual matches
(measured by α and c) and the number of these matches that are
involved in the group S.

We are thus interested in those S that minimise εS . Since a
comprehensive scanning is out of the question, a heuristic search is
called for.

The proposed criterion is a generalization of the one proposed
by Moisan and Stival. Their algorithm, called ORSA (for Optimized
Random Sampling Algorithm), selects reliable correspondences among
already known matches by using only the geometric criterion α.
They suggest taking into account the colorimetric distance c but in-
tend to identify matches over all possible correspondences (that is to
say over S1 × S2), which is simply untractable.

3. IMPLEMENTATION CHOICES

We specify here several pending points: the local descriptors, the
distance between descriptors, the probability distribution P (c), and
finally the proposed algorithm scheme aiming to find a correspon-
dence set that minimises εS .

3.1. Feature extraction and similarity measurement

We use the SIFT extractor from D. Lowe [8] for finding interest
points and computing local patch descriptors. These descriptors are
just rotation-scale invariant, which we consider to be a good enough
local approximation. The resemblance between descriptors is dif-
ficult to measure. Finding a distance between two descriptors con-
sists here in computing a histogram distance. This subject has been
studied in [9]. A compromise between speed and reliability can be
achieved with the χ2 distance, that we use.

We then evaluate the probability P (c) as an empirical cumu-
lative distribution function, estimated over the whole set of possi-
ble point matches. The study of the distance distribution between
patches shows us that correct point matches have a rather small dis-
tance compared to others. This characteristic allows us to actually
consider only a subset among the matching candidates by setting a
rough threshold and discarding the unrelated patches. This cut only
reduces the problem complexity and cannot really be considered as
a supplementary threshold. The important selection phase has yet to
be done.

3.2. Algorithm

Our algorithm follows the random sampling consensus scheme: we
first select a random sample of minimal size in order to evaluate a
fundamental matrix over it. Then, we build a meaningful set, con-
taining correspondences which fit the model computed on the sam-
ple. Since we use the so-called 7-points algorithm to evaluate the
fundamental matrices, random samples are made of 7 matched pairs
and lead to 3 matrices. Thus for each sample, up to 3 meaningful
sets have to be built. Let us explain how to select the random sample
and build meaningful sets.

No matched couples are provided, we just have lists of points
of interest (surrounded by local descriptors). Therefore, we build
groups of putative matches as explained in 3.1. We then choose
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a random sample by selecting 7 groups, and randomly one corre-
spondence candidate for each group. We call this notion a group of
candidates, that is, group linking an interest point in the first view
with all possible correspondences in the second view: their number
is limited by the rough cut made on descriptor distances.

Since we cannot consider an exhaustive search among all the
possible subsets, which is the only way to find the most meaningful
subset that we are interested in, we present a heuristic method. In
order to compute the meaningful set of correspondences, we have to
calculate α (defined in equation 1) for the points in correspondence
outside the sample. At most one correspondence is valid in each
group, so at most one correspondence should be used. We select the
correspondence with the least epipolar distance, and thus the least α,
among the group of candidates. The selected correspondences are
ordered by increasing α. We thus obtain nested subsets of size k,
with k between 8 and n, n being the number of groups of candidates.
We associate to each one of them the maximum value P (c). For each
subset of size k, we are now able to compute the meaningfulness εS .
The set with the minimum εS is the most meaningful one.

An advantage of the a contrario model is the meaning of εS : if
εS < 1, we can be sure that the considered set is not observed by
chance. It leads to an interesting optimization step. Once we obtain
a set with εS < 1, the sample is chosen inside the set, and not among
the whole groups. For each group chosen for the sample evaluation,
we keep the last selected match instead of randomly sampling among
the candidates in the group. The algorithm follows:

• extract interest points (SIFT)

• compute the distribution P (c)

• build the groups of candidates

• Let ε = +∞, repeat

1. choose a sample: a set T of 7 groups, and one corre-
spondence for each group (among all groups at first,
and among previously found meaningful set during the
optimization step)

2. determine the most meaningful set U associated to
each fundamental matrix F corresponding to T :

– compute α for each group
– sort groups with α increasing
– choose the maximum P (c) for each set with in-

creasing α

– compute εS and choose the subset minimising
it.

3. if εS(U) < ε, then ε = εS(U) and S = U

4. if εS(U) < 1, enter the optimization step.

until the number of iteration is greater than N (Nopt in the
optimization step, with Nopt = N

10
)

• return S and ε.

4. EXPERIMENTAL RESULTS

In this section we show that the information brought by local patches
enables a better selection among the point matches, especially when
confronted with repeated patterns. Indeed, the classical matching
methods simply threshold the distance between descriptors. It there-
fore furnishes lots of mismatched points in the case of repetitions,
that spoil the fundamental matrix estimation.

Tests are conducted on three types of image pairs. The pro-
posed algorithm is compared with Moisan and Stival’s ORSA (see
section 2.3) feeded with correspondences that are brought by the

Fig. 1. Synthetic case: crosses show interest points, and straight
lines their apparent displacement between two views. Detected in-
liers are in white, and outliers in black. In the proposed approach (on
the left), we do not show every filtered outliers for visibility reasons.
We get twice as much inlying correspondences with the proposed
method as with ORSA. The estimated fundamental matrix is also
more precise (the average epipolar distance is 0.2 pixels vs. 0.7),
and computation time does not exceed one second.

ORSA proposed algo.
matches accu. matches accu.

synthetic cube 97 0.73 193 0.19

real cube 247 0.19 371 0.15

Union Station 304 2.52 316 0.55

Loria 568 0.66 702 0.59

Table 1. Comparison of the two algorithms, showing the number
of inlying correspondences and the average distance between inliers
and their epipolar line (measured in pixels.)

popular SIFT matching procedure by Lowe. First, our algorithm is
evaluated on computer generated views, then in a laboratory experi-
ment, and finally on real-life pictures.

Figure 1 shows the synthetic case. We have generated 400×300
synthetic images with Blender software. See caption for comments.

Figure 2 and 3 show the “laboratory experiment” on a real cube
pair from a 320 × 240 video acquired via a digital camera. Corre-
spondences given by ORSA can be seen in figure 2. We get more
correspondences using our algorithm (see figure 3), since we do not
a priori throw away ambiguous feature points. The number of corre-
spondences increases by about a factor 2 in areas containing repeated
patterns.

Results of experiments led on pairs of real-life pictures and the
two previous pairs are summarized in table 1. Union Station (see
figure 4) and Loria are respectively 640×480 and 720×576 pairs of
images. This confirm that both the accuracy (illustrated with Union
Station details in figure 5) and the number of inliers increase.

5. CONCLUSION AND PERSPECTIVES

In this article, we have introduced an algorithm that allows us to si-
multaneously match local descriptors and estimate the fundamental
matrix. The cornerstone of this approach is the a contrario model
combining geometrical conditions and local similarities in images.
We obtain a significant gain in accuracy, with generally most inlying
correspondences, especially when confronted with repeated struc-
tures.

Nevertheless, the result quality depends on local descriptors in-
variance. As SIFT descriptors are only rotation-scale invariant, we

I - 515



Fig. 2. ORSA case: correspondences in presence of repeated pat-
terns. The front side has not as many matches as one could expect.

intend to study other descriptors. Let us note that our algorithm
only needs a metric between descriptors, and is independent from
their building process. We also envisage using preemptive tests from
Nistér [10] to improve the real-time response and use our technique
in tracking problems.
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Fig. 3. When adding local patches similarity to the a contrario
model: twice as much reliable matches are generated. A better fun-
damental matrix estimation is also obtained.

Fig. 4. The Union Station image pair. Notice the repeated structures.

Fig. 5. Union Station details. Numbers show the interest points
and the associated epipolar lines, on which they should lay. This
illustrates the gain in accuracy with the proposed algorithm (on the
right) towards ORSA (on the left).
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