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ABSTRACT
The automated analysis of images is an active field of re-
search in image processing and pattern recognition. In many
applications, the first issue is to face illuminations artifacts
that can appear due to bad imaging conditions. These arti-
facts often have direct consequences on the efficiency of the
image analysis algorithms but also on the quantitative mea-
sures. This paper presents a fully automated nonuniformity
correction based on empirical mode decomposition. The per-
formances are outlined using both synthetic and real data.

Index Terms— Image analysis, image enhancement, im-
age restoration, biomedical image processing, biomedical mi-
croscopy.

1. INTRODUCTION

In many applications (magnetic resonance, confocal microscopy,
radar, ultrasound, etc...) images are subjected to illuminations
artifacts. These biases, or shading, can strongly corrupt low
level image analysis (such as segmentation, intensity evalua-
tion) or higher level computations (features detection or any
kind of ad-hoc descriptors extraction) [1]. To overcome this
drawback many methods have already been proposed in liter-
ature. A reader can refer to [2] for a comparative evaluation of
the most common intensity inhomogeneities correction tech-
niques. These methods can be classified into two families:
parametric and non parametric. In this paper, we propose a
non parametric method based on Empirical Mode Decompo-
sition (EMD) surface modeling.
In section 2, we formulate the problem of bias in image

processing. Section 3 of this paper presents our technique for
image bias correction based on empirical mode decomposi-
tion. In Section 4, we validate our algorithm on simulated
and biological images.

2. BIAS IMAGE CORRECTION

Shading phenomenon is often defined as a smooth intensity
variation, leading to a nonuniform illumination of the image.
Based on this definition, we assume that the corrupted images
can be seen as a non-stationary process.

In signal processing, according to the traditional defini-
tion, a time series, X(t), is stationary in the wide sense, if,
for all t,

⎧⎨
⎩

E(|X(t)2|) < ∞
E((X(t)) = m,

C(X(t1), X(t2)) = C(X(t1 + τ), X(t2 + τ)),
(1)

in whichE(.) is the expected value andC(.) is the covariance
function.
In our context, we consider that each pixel I(x, y) of an

image I is a combination of its real intensity I0(x, y), an illu-
mination bias artifact b(x, y), and an additive white Gaussian
noise ε ≡ N(0, σ2

noise) [3], where (x, y) is the spatial loca-
tion of a specific point within an image of size X × Y . The
relation is given by:

I = I0b + ε. (2)

It is necessary to find a method which is able to discrimi-
nate the variation of the expected value during the time. Ac-
cording to equation (2), to correct each picture, we divide the
observed signal I by the estimated bias b̂. Equation (2) thus
becomes:

I

b̂
=

I0b

b̂
+

ε

b̂
.

We systematically apply a Gaussian filtering to the image
prior to estimating the bias. Hence, ε << b̂ can be omitted
and we obtain:

Î0 =
I

b̂
≈

I0b

b̂
≈ I0, (3)

where Î0 is the corrected image.

3. EMPIRICAL MODE DECOMPOSITION

3.1. 1D overview

In a recent work, Huang et al. [5] proposed a new method
to analyze some nonlinear and non-stationary process called
Empirical Mode Decomposition (EMD).
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(a)
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Fig. 1. EMD process on a 1D signal [4]. Top: The original
signal between the interpolated envelop Emax and the inter-
polated envelop Emin. Bottom: the original signal and the
residue.

It is based on the localization of the different maxima and
minima which contain the signal. If we take a simple example
like a pure sinus signal, it is obvious to see that the frequency
of the signal is the result of two consecutive maxima or min-
ima and the variation of the mean is also subjacent to the value
of these extrema.
The principle of this basis construction is based on the

physical time scales that characterize the oscillations of the
phenomena. EMD provides an adaptive and locally decom-
position method. The signal is decomposed into a redundant
set of signals denoted IMF for intrinsic mode functions and a
residue (see Fig.1). Authors in [6] propose a first mathematic
approach of the IMF. Adding all the IMFs together with the
residue reconstructs the original signal without information
loss or distortion. The empirical mode frequency called em-
piquency is obtained by considering the successive extrema
points of the function. The EMD algorithm is:

• find all the local minima and all the local maxima in the
image,

• make a spline interpolation of the local maxima, that
will be defined as the upper envelope denotedEmax(t),

• make a spline interpolation of the local minima, that
will be defined as the lower envelope denoted Emin(t),

• calculate the mean of the upper envelope and the lower
envelope,

M(t) =
1

2
(Emax(t) − Emin(t)),

• subtract the mean signal M(t) from the input signal
X(t),

H(t) = X(t) − M(t).

This algorithm is iterative, and we consider the mean sig-
nalM(t) as the input signal.
We obtain a representation ofX(t) of the form:

X(t) = MK(t) +

K∑
k=1

Hk(t).

This method is principally used in the signal processing
field. We propose here to extend this approach for image bias
estimation.

3.2. 2D extension

To our knowledge, most of the applications using EMD are in
1D [4]. Nevertheless, the EMD can be implemented in two
dimensions via, for example, the thin-plate spline [7]. After
the extraction of local maxima we proceed to an interpolation
by a radial basis function (RBF). The RBF is an interpolation
method that finds a minimally bent smooth surface that passes
through all given points.
We want to estimate the function s, with s(xi, yi) = zi,∀i ∈
(1, n).

s(x, y) = p1(x, y) +

n∑
i=1

λi.Φ
(∣∣∣

(
x

y

)
−

(
xi

yi

) ∣∣∣),

with p1 a polynomial of degree 1, p1(x, y) = c0 + c1x + c2y,
λi is a real-valued weight, Φ(.) a basis function, |.| denotes
the Euclidean norm and xi, yi the points known. To obtain
the surface interpolation, we have to solve:

(
A Q

QT 0

)
.

(
λ

c

)
=

(
z

0

)
,

with A = a(ij) = Φ
(∣∣∣

(
x

y

)
−

(
xi

yi

) ∣∣∣) , and:

⎧⎪⎪⎨
⎪⎪⎩

c = (c1, c2, c3)
T ,

p1 = c0 + c1x + c2y,

z = (z1, z2 . . . zn),
λ = (λ1 . . . λn)T ,

and Q =

⎛
⎜⎜⎜⎜⎝

1 x1 y1

1 x2 y2

. . .

. . .

1 xn yn

⎞
⎟⎟⎟⎟⎠ .

In our case, we choose Φ(r) = r2 log(r) leads to a thin-
plate spline interpolation. Then, once we know values for λi

and c1, c2, c3, we can interpolate z for any arbitrary points
(x, y).
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Fig. 2. From top to bottom: Original texture (sand) and one
associated intensity profile. Biased texture and corresponding
profile where we can see the trend of the image, and the trend
estimated by our method. Corrected texture and correspond-
ing profile

4. VALIDATIONS

In this section we apply our correction scheme on artificially
biased texture and real microscopic cells corrupted images.

4.1. Simulated bias images

In order to validate our algorithm, we are looking for some
images that verify the assumption of stationarity: mean, vari-
ance and autocorrelation structure should not change over time
as defined in Eq.(1). Textures are defined like stochastic and
stationary images. In our purpose, we choose deterministic
textures from the Brodatz1 database and we generate smooth
bias images issued from low order Legendre orthogonal poly-
nomial functions. This bias is multiplied by texture images.
The resulting image becomes non stationary.
Figure 2 illustrates how a bias modifies the original image

and leads to a non stationary image with a smooth trend. We
recover the trend present in the biased image by our method
as described in Eq.(2).
We apply this correction framework on different textures.

To evaluate the result, we calculate the Euclidean distance be-
tween original, I0, and biased, I , data and then between orig-
inal and the corrected data Î0 as describe in Eq.(3).
Table 1 displays the results of this evaluation. For each

texture, we improve the L2 distance between original and
corrected images. In order to verify Eq. (1), we calculate

1http://www.ux.uis.no/t̃randen/brodatz.html

L2(I0, I) L2 (I0,Î0) σμ(I0) σμ(I) σμ(Î0)
sand 0.095 0.029 2.48 37.28 6.90
wood 0.055 0.038 3.99 25.02 15.06
grass 0.043 0.033 6.9 17.04 13.09

Table 1. Euclidean distance and variance of the mean for
three different textures. Correction process always improves
these criteria.

the variance of a sliding mean over the whole image. Our re-
sults seems to be related to the stationarity of the original data.
However, the last criterion for the stationarity (covariance) is
not necessary increase.

4.2. An application to cellular imaging

Nowadays, newmicroscope imaging platform provides a very
large amount of pictures and requires more quantitative pro-
cess than before. To perform this, it is important to add a ro-
bust correction pre-processing. In the biological microscope
image processing field, it is typical to deal with biased im-
ages (in our case due to bad auto-focusing and dichroic mir-
ror deformation) and thus, it is helpful to develop an accurate
restoration algorithm. Figures 3 & 5 display typical cell im-
ages and reveal that this kind of images can be considered as
texture, as defined in the previous section. We propose here
to perform EMD bias correction on fluorescence microscope
cell images and thus to validate the relevance of this algorithm
for these particular images.
Figure 3 presents a typical biased present in microscope

images. We choose an intensity profile in a highly corrupted
area of the picture to confirm the improvement of the correc-
tion. Moreover, figure 5 points out a visual improvement of a
global segmentation process.
We also make a qualitative validation with a higher level

process describes in [1]. Figure 4 shows that this feature de-
tection framework is enhanced by the pre-processing step we
propose.

5. CONCLUSION

Most sensors produce illumination artifacts on images and
lead to poor analysis results. The formulation of the bias is
commonly accepted to be a multiplicative term. In this paper
we have established a first approach of the capabilities of the
empirical mode decomposition to approximate the bias either
on synthetic or natural images. An experiment on textures
allows us to obtain a quantitative validation. We also apply
our algorithm on confocal microscopic images and evaluate it
with low and high level criteria. The first one is a global seg-
mentation and the second one is a detection of feature points.
In both cases, we significantly improve the results. We are ac-
tually working on a comparative evaluation of our technique
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Fig. 3. From top to bottom: microscope cells biased image
and associated intensity profile. EMD bias estimated and cor-
responding profile. Corrected image and its profile. It is im-
portant to notice that the corrected image has been multiply
by a factor for visualization convenience.

Fig. 4. Scheme of the detection process. We improve the
segmentation and so the detection of point.

to the most commonly used in the literature.
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Fig. 5. From top to bottom: microscope cells biased image
and the result of a K-mean segmentation. Corrected image
and the result of a K-mean segmentation.
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