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ABSTRACT

In this paper, we discuss the application of the two-dimensional
paired representation for processing medical images. This repre-
sentation leads to the effective solution of the discrete as well as
continuous model of image reconstruction from their projections,
and to the image enhancement. These two applications can be
combined in order to receive high quality images. The method of
paired representation of two-dimensional (2-D) images is consid-
ered with respect to the 2-D discrete Fourier transform (DFT). Ba-
sis functions of the paired transformation are defined completely
by parallel projections. At the same time, the paired representation
describes the image as a set of short 1-D real signals (splitting-
signals) which completely determine the 2-D DFT of the image
at disjoint subsets of frequency-points. The image enhancement
procedure is thus can be reduced to processing splitting-signals
and such process requires only a few spectral components of the
image. For instance, the traditional α-rooting method of image en-
hancement can be fulfilled through processing the splitting-signals
defined for only 3N −2 frequency-points, when the image has the
sizeN ×N , andN is a power of two. It is shown, that processing
one or a few splitting signals leads to a high image enhancement.

Index Terms – Image enhancement, paired representation, fast
paired transform, Fourier transform.

1. INTRODUCTION

In medical imaging, such as the computer tomography and mag-
netic resonance, two- and three-dimensional images (or stack of
two-dimensional images) of different organs and tissues are pro-
duced. There are many sources of interference in the production
of medical images, such as the movement of a patient, insufficient
performance and noise of imaging devices. The quality of many
images is poor in their contrast, and to improve the quality of ima-
ges, enhance edges, to see clearly enough critical details, and re-
duce the noise for diagnostic purposes, methods of enhancement
can be used. The purpose of image enhancement is thus to improve
a digital image quality and to support the human perception [13-
19].

We consider the Fourier transfer-based image enhancement,
although other transforms such as the Hadamard and cosine trans-
forms can be used for image enhancement as well [11, 12]. Our
focus is on the new method of the α-rooting [8] which is used in
the 1-D form for enhancing splitting-signals of the paired repre-
sentation of the image. Such application of the paired transform
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together with the α-rooting results is very effective in image en-
hancement. The advantage of such application of the paired trans-
form is in the fact, that this transform splits, or reveals the struc-
ture of the 2-D DFT in an optimal way, which allows us to not
only to calculate faster the 2-D DFT, but to fulfil many opera-
tions over the spectrum through the splitting-signals. Indeed, the
calculation and analysis of the two-dimensional discrete Fourier
transform (2-D DFT) are the main steps of the image enhance-
ment. In the paired representation, an image is considered as a
certain totality of 1-D signals (which we call splitting-signals, or
image-signals) that carry the spectral information of the 2-D DFT
of the image at frequency-points of different and disjoint subsets
in the frequency domain. The problem of 2-D image enhancement
can thus be reduced to the split α-rooting method, when splitting-
signals are processed separately to achieve high quality enhanced
images, even by processing only one of a few such signals.

In this paper, a new effective paired-transform-based split α-
rooting method of image enhancement is presented, when only
one splitting signals is used enhancement, and which is performed
without 2-D DFT. Each signal also can be modified by using only
one enhancement coefficient instead of maximum N/2. It will be
shown, that the image enhancement can be performed by using
maximum 3N −2 coefficients of the 2-D DFT of image (N ×N),
when N is a power of two. The image splitting which is per-
forming by the paired transform that does not require operations
of multiplication.

1.1. Frequency Domain Methods

The Fourier transform-based method of image enhancement con-
sists in computing the 2-D DFT of the image, manipulating the
transform coefficients by a specific operator M, and performing
then the inverse 2-D transform. We stand here on the case when
M is an operator of magnitude and the enhancement is described
by

{fn,m} → {Fp,s} → {Gp,s = M [|Fp,s|] e−jϑp,s} → {gn,m}
(1)

where ϑp,s is the phase spectrum of the image.
In the α-rooting method of image enhancement [8], the mag-

nitude of the Fourier transform of the image is transformed as
M [|Fp,s|] = |Fp,s|α at frequency-point (p, s), and the parameter
α is taken from the interval (0, 1). In other words, the compo-
nents of the Fourier transform, Fp,s, are multiplied by coefficients
C(p, s) = |Fp,s)|α−1 which we call enhancement coefficients.
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1.2. Paired Representation

In the paired representation transform [10], the 2-D N × N -point
DFT can be split into a maximum number of short 1-D DFTs. In
the N = 2r case, where r > 1, the transform is defined by the
following paired functions

χ′
p,s,t(n, m) =

��
�

1, if np + ms = t mod N
−1, if np + ms = (t + N/2) mod N

0, otherwise
(2)

where n, m = 0 : (N − 1). There exists such a set U of triples
(p, s, t), that the totality of paired functions χ′ = {χ′

p,s,t; (p, s, t) ∈
U} compose a basis in the linear space of discrete images of size
N × N (see [ ] for detail). In numbering of the paired functions,
two parameters relate to the frequency, and one to the time. The
paired splitting-signal with number (p, s),

fT ′
p,s

= {f ′
p,s,0, f

′
p,s,1, f

′
p,s,2, . . . , f

′
p,s,N/2−1}.

is defined by

f ′
p,s,t = χ′

p,s,t ◦ f =

N−1�
n=0

N−1�
m=0

χ′
p,s,t(n, m)fn,m (3)

where t = 0 : (N/2 − 1) with step 1, or 2n = g.c.d(p, s). The
following holds:

F(2m+1)p,(2m+1)s =

N/2−1�
t=0

�
f ′

p,s,tW
t�W mt

N/2 (4)

for m = 0 : (N/2 − 1). Thus the 2-D DFT of f at frequency-
points of the following subset

T ′
p,s =

�
(p, s), (3p, 3s), , (5p, 5s) . . . , ((N − 1)p, (N − 1)s)

�

(5)

If g.c.d(p, s) = 2n, where n ≥ 0, then the components
f ′

p,s,t = 0 if t is not divisible by 2n. The splitting-signal fT ′
p,s

is considered as the signal of length N/2n+1,

fT ′
p,s

= {f ′
p,s,0, f

′
p,s,2n , f ′

p,s,2·2n , . . . , f ′
p,s,N/2−2n}

TheN/2-point DFT in the right side of (4) represents theN/2n+1-
point DFT of the splitting-signal fT ′

p,s
modified by the vector of

twiddle factors {W t
N/2n ; t = 0 : (N/2n+1 − 1)}.

The 2r×2r-point DFT is split into 2r3−2 short DFTs, namely,
3 · 2r−1 2r−1-point DFTs, 3 · 2r−2 2r−2-point DFTs, . . . , and
six 2-point DFTs. The totality of 3N − 2 splitting-signals {fT ′ ,
T ′ ∈ σ′} consists of 2r−13 signals of length 2r−1, 2r−23 signals
of length 2r−2, and so on. The summary length of all splitting-
signals equals N2.

As an example, Figure 1 illustrates the image of size 128×128
in part a, along with the splitting-signal f ′

T6,1 of length 64 in b, the
1-D DFT over this splitting-signal in c, and frequency-points of
subset T ′

6,1 at which the 2-D DFT of the image is filled by the 1-D
DFT in d.
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Fig. 1. (a) Original image. (b) Splitting-signal fT6,1 . (c) The
1-D DFT of the splitting-signal [no shifting in the center]. (d)
Arrangement of values of the 1-D DFT in the 2-D DFT of the
image at frequency-points of the subset T ′

6,1.

2. EXPERIMENTAL RESULTS

2.1. Concept of 1-D α−rooting
α−rooting also named as root filtering is first introduced by Er-
soy [8]. The purpose of root filtering is enhancement of details in
the image that to be processed. Root filtering is adaptive to pixels
or elements. The basic idea of root filtering can simply be ex-
plained as emphasizing the high frequency components more than
low frequency components. The mathematical background of root
filtering is given by the below equation. Let fn be the 1-D signal
and Fk be the 1-D DFT of fn. Than root filtering can be defined
as:

F ∗
k = |Fk|(α−1).Fk

where F ∗
k is the processed signal. As it can be seen from the root

filtering equation each element of signal is multiplied by coeffi-
cients depend on element itself. Figure 2 shows a sample appli-
cation of root filtering. The coefficients defined as Ck refers to
|Fk|(α−1).
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Fig. 2. (a) Original signal fn of length 256. (b)Coefficients Ck of
length 256 (c) Enhanced signal f

′
n of length 256.

The high frequency elements in signal is enhanced by root fil-
tering as can be seen in figure 2.

2.2. Method of Paired enhancement

The algorithm used in method is paired enhancement is as follows:
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Step 1: Calculate paired splitting signals f
′
T

′
p,s
.

Step 2: Multiply the paired signal by exponential weights

�fT
′
p,s

= f
′
T

′
p,s

W−t/N1

where N1 = N/2 and t = 0 : (N − 1).
Step 3: Perform the 1-DDFTs of the weighted paired splitting-

signals

�fT
′
p,s

→ Fk =

N−1�
t=1

�fp,s,tW
kt, k = 0 : (N − 1).

Step 4: Multiply coefficients of the transforms of splitting-
signals by coefficients Ck = A|Fk|α−1.

Step 5: Fill the 2-D DFT by new 1-D DFTs at points of sets
T

′
p,s.
Step 6: Perform the inverse 2-D DFT.

In paired method enhancement with using different α’s, the
paired signal is decomposed into parts and each part is processed
with a different optimum α. The optimality is with respect to the
enhancement measure QME [12].

Fig. 3. Original PET image.
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Fig. 4. Energy graph of splitting signals of PET image.

In figure 3 the original Pet image is shown. In figure 4 the
energy values of 3N/2 paired signals are plotted. It can be seen
that the energy is usually condensed on the signals which has p or
s as 2’s power.

Figure 5 shows the results of enhancement respectively by
α−rooting [a] 2-D image ,[b] tensor splitting-signal fT6,1 [c] paired
splitting-signal f

′
T

′
6,1

α = 0.92 (optimum for traditionalα−rooting).
In [d] paired splitting-signal f

′
T

′
6,1
is used however different opti-

mum α’s are used for each decomposition of it. It can be seen here
the paired α−rooting with different optimum α’s outperforms 2-D

(a)

(b) (c)

(d)

Fig. 5. (a) Enhanced by traditional alpha rooting QME=27.22 (b)
Enhanced by tensor splitting signal (1,6) QME=12.94 α = 0.92
(c) Enhanced by paired by paired splitting signal (1,6) with same
α = 0.92 QME=12.92 (d) Enhanced by paired splitting signal
(1,6) with different optimum α’s for each decomposition of paired
signal QME=27.68

α−rooting with respect to enhancement of contrast measure QME.
Figure 6 shows the same methods with different splitting-signal
fT0,1 and different α = 0.95.
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Fig. 6. (a) Enhanced by traditional alpha rooting QME=19.77 (b)
Enhanced by tensor splitting signal (0,1) QME=16.27 α = 0.95
(c) Enhanced by paired tensor splitting signal (0,1) with same α =
0.95 QME=19.98 (d) Enhanced by paired tensor splitting signal
(0,1) with different optimum α’s for each decomposition of paired
signal QME=15.29

In figure 7 the same methods are applied to luminance com-
ponent of color Pet image and visually both 1-D paired methods
outperforms 2-D traditional α rooting.

Figures 8 and 9 show the application of 2-D α−rooting and
proposed methods to a mammogram image and Fish image. The
improvement of the contrast is seen clearly. Enhancement mea-
sure QME also shows this improvement. Proposed methods work
slightly better than traditional method.
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Fig. 7. (a) Enhanced by traditional alpha rooting (b) Enhanced by
tensor splitting signal (1,1) α = 0.9 (c) Enhanced by paired tensor
splitting signal (1,1) with same α = 0.9 (d) Enhanced by paired
tensor splitting signal (1,1) with different optimum α’s for each
decomposition of paired signal

(c)
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(d)

Fig. 8. ((a) Original image QME=3.43 (b) Enhanced traditional
α− rooting QME=7.03 α = 0.92 (c) Enhanced by paired splitting
signal (1,1) with same α = 0.92 QME=7.56 (d) Enhanced by
paired splitting signal (1,1) with different optimum α’s for each
decomposition of paired signal QME=8.00

3. CONCLUSIONS

Two methods of enhancement are proposed here. Enhancement
by paired splitting signal with same α for all decompositions of
splitting-signal and with different α’s for each decomposition of
splitting-signal. Each proposed method decreases the burden in
processing image two dimensionally. These methods will be im-
proved by developing of processing of splitting-signal with one α
weighted coefficient.
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