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ABSTRACT

The restoration of missing regions in images (inpainting) is math-
ematically an interpolation problem and has many important ap-
plications. This paper proposes a novel iterative inpainting algo-
rithm based on the interpolation of the Complex Wavelet Transform
(CWT) coefficients with simple geometrical models on the magni-
tude and phase of the coefficients. The geometrical models describe
the directionality and uniformity of the CWT magnitudes and the
linearity of the CWT phases around edges and within texture areas.
Both piecewise smooth signals and structured textures can be inter-
polated accurately with the proposed models. Motivated by the iter-
ative reconstruction of an image from its CWT magnitude or phase,
we propose an inpainting algorithm with iterative magnitude and
phase estimation and CWT reconstruction. Simulation results show
that the proposed algorithm achieves high PSNR and appealing vi-
sual quality with low computation complexity.

Index Terms— Wavelet transforms, Image restoration

1. INTRODUCTION

The restoration of missing regions in images has many important ap-
plications, such as the removal of scratches in old paintings [1], the
predictive coding of images and videos, and the recovery of dam-
aged image/video blocks due to errors in transmission or storage
[2]. This problem has been known as inpainting among museum
restoration artists. Inpainting algorithms estimate or interpolate a
missing region of an image from information provided by surround-
ing regions based on some assumed model for images. This paper
proposes a novel inpainting algorithm that interpolates piecewise
smooth regions, edges, and patterned textures in images based on
models placed on the magnitudes and phases of a Complex Wavelet
Transform (CWT) representation of the unknown image.

It is clear that two types of image information need to be interpo-
lated by any reasonable image model for inpainting. Within smooth
(or piecewise smooth) regions, gray levels of the missing region
should be smoothly interpolated based on surrounding gray levels.
Many linear methods (polynomial interpolation, bandlimited inter-
polation, etc.) perform this processing well. But when surrounding
pixel values indicate that some spatial structure (an edge, edges, or a
patterned texture) passes through the missing region, a second type
of interpolation is needed. In such cases, it is perhaps more clear to
view the structure itself as being interpolated, rather than the pixel
values. For example, inpainting a region containing a sharp edge in-
volves first smoothly interpolating the contour defined by the edge,
and then smoothly interpolating the pixel values on either side of the
edge. Similarly, inpainting a region surrounded by patterned texture

involves replicating the surrounding structure smoothly through the
missing region. Because this second type of interpolation involves
estimating the locations of structure features, nonlinear processing
approaches are needed.

Existing approaches to inpainting implicitly define the missing
region as the solution to a nonlinear optimization problem. For ex-
ample, [3, 4] use variational methods, computing the missing region
as the solution to a nonlinear PDE used to propagate information
from the surrounding areas. These variational approaches work well
on piece-wise smooth images but poorly on textures. The approaches
of [5, 6, 7] define the missing region as the solution to an optimiza-
tion problem seeking to maximize the sparsity of the image’s linear
expansion with respect to a specified dictionary of images. These ap-
proaches are very complex, and their performance depends heavily
on the choice and design of various dictionaries.

This paper proposes a much more direct and unified approach to
interpolating both gray levels and spatial structures, using the CWT
representation of the image. The CWT represents an image with a
redundant collection of coefficients generated by a bank of bandpass,
analytic filters. The filters are selected so that, with redundancy of
two in each direction, each band offers an unaliased representation of
signal energy in a particular frequency range. The central idea of our
approach comes from the observation: the missing region of an im-
age is correctly interpolated from surrounding regions if the missing
(or partly missing) CWT coefficients corresponding to that region
are correctly interpolated from surrounding regions of coefficients.
To interpolate the CWT coefficients in each band, we separately in-
terpolate their magnitudes and their phases. I.e. using the CWT,
we translate the inpainting problem into many smaller impainting
problems of each band’s magnitude and phase fields. CWT magni-
tudes represent the local band energy, and are typically very smooth
in the highest energy bands associated with edges or patterned tex-
tures. Thus, although any approach can be used to interpolate the
magnitude fields, we find that very simple directional smoothing of
these fields gives very good results. CWT phases are only significant
for coefficients with large magnitudes, and, for such coefficients, the
phases represent the location of the band’s energy. Using linear-
phase CWT filters, we find the unwrapped phase fields associated
with edges and patterned texture are approximated well by linear in-
terpolation models. It should be noted that, since our very simple
linear interpolation models are applied to parameters (magnitudes
and phases) that are nonlinearly related to the image pixel values,
they do not correspond to linear modeling assumptions on the image
itself.

The paper is organized as follows. In section 2, we discuss the
CWT and its important properties related to inpainting. In section
3, we propose a new iterative inpainting algorithm based on sim-
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ple geometrical models of CWT magnitudes and phases. Section 4
gives some simulation results and section 5 concludes the paper and
discusses possible future work.

2. THE COMPLEX WAVELET TRANSFORM

The CWT (see [8] and the reference therein) is a multi-resolution
representation of images. In its magnitude and phase form, the CWT
decomposes an image f (x, y) into a set of magnitudes ρ(x, y; k)
and phases θ(x, y; k), where k is in an index set Φ of scales and
orientations. The CWT magnitude represents a smoothed measure-
ment of the local signal energy for the designated frequency band,
and the CWT phase indicates the location of that energy relative to
the position of the each coefficient.{

ρ(x, y; k)ej θ(x,y;k) : k ∈ Φ
}

= CWT(f )

The frequency responses of the CWT filterbank on the first three
levels are shown in Fig. 1 1. With carefully designed filters and re-
dundancy, the CWT is nearly alias free, its magnitude response is
a smooth measure of local energy, and its phase response is exactly
or approximately linear. In higher dimensions, the CWT is approxi-
mately shift and rotational invariant.
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Fig. 1. The frequency response of the CWT

Two properties of the CWT are critical to our development of
the inpainting algorithm of this paper. First, the CWT magnitude
and phase exhibit strong geometrical regularity around edges and
within texture areas. As illustrated in Fig. 2, the CWT magnitude
is a smooth ridge-like function around edges (e.g., the arm and the
chair leg). If an edge is symmetric, the CWT phase is approximately
linear. Structured textures (e.g., the pants and the table cloth) can
usually be decomposed into localized directional narrow band 2D
components by the CWT and each component has uniform or pat-
terned magnitude and approximately linear phase.

(a) Barbara (b) CWT magnitude (c) CWT phase

Fig. 2. The geometrical regularity of the CWT magnitude and phase

The second property of the CWT critical to our algorithm devel-
opment is the fact that images can be reconstructed from CWT mag-
nitude or phase. The CWT can be considered as a localized Fourier

1All the figures and results in this paper are generated with an implemen-
tation of the CWT following [9].

transform. It is well known that an image can be reconstructed from
its localized Fourier magnitude or phase iteratively with POCS-like
(projection onto convex set) iterations [10, 11, 12]. Similarly, an im-
age can be reconstructed from its CWT magnitude or phase under
certain conditions (e.g., Fig. 3). An algorithm to reconstruct from
CWT magnitude is given below and the algorithm for reconstruction
from CWT phases is similar.

Iterative Reconstruction from the magnitude
Given initial f̂ and the magnitude ρ.
(1) Compute the CWT: (ρ̃, θ̃) = CWT(f̂).
(2) Let (ρ̂, θ̂) = (ρ, θ̃).
(3) Compute the inverse CWT: f̂ = ICWT(ρ̂, θ̂).
(4) Goto (1).

The reconstruction process is shown in Fig. 3. The convergence
is very slow because some regions in images are not suitable for
either magnitude only or phase only representation. For example, the
magnitude contains little information about the texture structure and
the phase has no significance in smooth regions. The convergence
becomes very fast if the suitable representation is chosen (e.g., use
magnitude for smooth areas and phase for textures).
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Fig. 3. Iterative reconstruction of Fig. 2 (a) from only its CWT mag-
nitude and phase (the reconstruction from magnitude cannot con-
verge to the right image because the magnitude has little information
about the texture structures).

3. THE PROPOSED INPAINTING ALGORITHM

Suppose in an image f , the region fa is known and the region fb is
missing. The missing fb has to be estimated from the information
available in fa with some assumed image model.

f =

[
fa

fb

]
In the CWT domain, there are roughly corresponding missing re-
gions of the magnitude (ρ) and phase (θ) in each band. Therefore,
the original inpainting problem of estimating fb is translated into the
problem of estimating (ρb , θb) in each band.

ρ =

[
ρa

ρb

]
, θ =

[
θa

θb

]
As discussed above, ρ and θ have strong geometrical regularity

around edges and within textures. In section 3.1, we propose sim-
ple models to describe the geometrical regularity and estimate the
missing magnitude and phase:

ρ̂ =

[
ρa

ρ̂b

]
, θ̂ =

[
θa

θ̂b

]

Here, we assume that the models hold around and within the missing
region and the image with a set of magnitude and phase satisfying
the models is a reasonable estimate of the original image.
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If the estimation is perfect (ρ̂ = ρ and θ̂ = θ), the image f can
be recovered trivially with the inverse CWT (f = ICWT(ρ, θ)). In
reality, there are errors in the estimation. Then, due to the redun-
dancy of the CWT, the image with exactly the estimated magnitude

(ρ̂) and phase (θ̂) may not exist. The image given by the inverse

CWT (f̃ = ICWT(ρ̂, θ̂)) may be unsatisfactory, because its mag-

nitude and phase fields ((ρ̃, φ̃) = CWT(f̃ )) do not necessarily sat-
isfy the modeling constraints that were applied to estimate ρ̂ and

θ̂. Inspired by image reconstruction from its CWT magnitude and
phase, in section 3.2, we propose an iterative estimation algorithm
to enforce the geometrical models on the magnitude and phase and
converge to an image satisfying the proposed models.

3.1. Geometrical Models for CWT Magnitude and Phase

We propose a directional model for the CWT magnitude in the miss-
ing region. Suppose a block of m by m magnitudes is missing in one
CWT band and denote the i-th column of the missing magnitudes as
ρi . The columns ρi are modeled as different shifts of a common
function p:

ρi = D(p, τi)

where D(p, τ) is the shift of p with amount τ . We assume that
the variable τi changes smoothly with column number i (it can be
linear, quadratic or more complex functions of i). We found that a
linear model of τi is adequate for inpainting the missing blocks with
size 16 by 16 in real images 2, because within such a small region
image structures are close to be straight. Therefore, in this paper, we
simply choose τi to be linear in i. Correspondingly, the phases in the
missing region is simply modeled as a 2D linear function.

The magnitude and phase estimation with the proposed models
is explained by an example shown in Fig. 4. For clarity and space
reasons, only the interpolation strategy is explained and the imple-
mentation details are neglected. To interpolate the magnitude in Fig.
4 (a) from (b), we take the columns of the magnitudes just to the left
(ρl) and right (ρr) of the missing region and determine their relative
shift (τ̂ ) by maximizing the cross correlation of D(ρl, τ) and ρr .
We assume that the columns of magnitudes in the missing region
(ρi, l < i < r) are shifts of ρl and ρr and the shift τi changes lin-
early with i. Therefore, we can use the shift operator D to estimate
all the columns of magnitudes in the missing region as below:

τ̂i =
i − l

r − l
τ̂

ρ̂i =
r − i

r − l
D(ρl, τ̂i) +

i − l

r − l
D(ρr,−τ̂ + τ̂i)

For the estimation of the missing phases, we fit the unwrapped
CWT phase to a linear 2D plane with the current estimate of the
magnitude as weights. If the linear model fits the phases in the sur-
rounding areas very well, we use it to predict the phases in the miss-
ing region. Otherwise, we keep the current estimate of the phase and
rely on the magnitude estimate. For the case of Fig. 4, the phase in
the missing region can be recovered accurately.

3.2. The Proposed Iterative Inpainting Algorithm

To address the inpainting problem, we propose an iterative algorithm

to construct an image estimate f̂ with magnitude and phase comply-
ing with the models proposed above. It is interesting to note that

2The block size for image and video coding is usually no larger than 16
by 16.

(a) (b) (c) (d)

Fig. 4. The CWT magnitude and phase of the true image ((a) and
(c)) and of the image with missing block ((b) and (d)) (the phases
associated with very small magnitudes are set to 0).

image reconstruction from the CWT magnitude or phase is exactly

the case when only ρ̂ or θ̂ is accurate. Therefore, when either ρ
or θ can be estimated accurately, we could use that iterative algo-

rithm to reconstruct the missing block. When both ρ̂ and θ̂ are very
noisy, by replacing step (2) of the reconstruction algorithm in section
2 with the magnitude and phase estimation proposed in section 3.1,

we have an iterative inpainting algorithm. Even if none of ρ̂ and θ̂
is accurate enough to reconstruct a good estimate at the beginning,
by repeatedly enforcing the geometrical models of the magnitude
and phase, we expect that the algorithm will keep refining them and
converge to an image complying with the proposed models.

The algorithm is, however, not robust enough against the mag-

nitude and phase estimation errors caused by the initial estimate f̂0

(calculated by averaging the available neighboring pixels). When
the initial estimate contains some strong spurious edges, the estima-
tion may produce significant errors and the algorithm may converge
to a poor estimate of the missing block. One way of removing the
spurious edges in the initial estimate is to use an iterated denois-
ing method similar to [6] with the CWT based denoiser in [9] to
improve the quality of the initial estimate. This improved initial es-
timate works very well with the proposed iterative inpainting algo-
rithm. A better way is to combine the iterated denosing and iterative
estimation together. We choose a sequence of decreasing thresholds
and hard threshold the interpolated magnitude with the i-th threshold
in the sequence at the i-th iteration. The successive hard threshold-
ing operation will remove the influence of the spurious edges in the
initial estimate. The entire iterative algorithm is presented below:

The Proposed Iterative Inpainting Algorithm
Given parameter T0 > T1 and Δ

(1) Set n = 1 and T = T0.
(2) Compute the initial image estimate f̂0.
(3) Compute the CWT: (ρ̃, θ̃) = CWT(f̂n−1)

(4) Interpolate (ρ̃, θ̃) to get (ρ̂, θ̂)
(5) Hard threshold ρ̂ with T.
(6) Compute the inverse CWT: f̃ = ICWT(ρ̂, θ̂).

(7) Compute new estimate f̂n = [fa
T , f̃b

T
]T .

(8) Set n = n+1, T = T −Δ and goto (3) while T > T1.
(9) Output the final inpainting result

4. SIMULATION RESULTS

The simulation results of the proposed algorithm are shown in Fig.
5 and the results of the iterated denoising method in [5, 6] with 16
by 16 DCT are also shown for comparison. To finish all the shown
examples, it takes about 50 seconds with our algorithm, while the C
code of the iterated denoising method takes about 6 minutes on the
same computer. The image blocks are all from Lena and Barbara
with 16 by 16 missing blocks. We set Δ = 2, T1 = 6, and T0 to
4 times the standard deviation of the pixels surrounding the miss-
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ing block. The proposed algorithm generates inpainting results with
high PSNR and good visual quality. It may appear to the readers that
the proposed linear models are too simple for real life images. How-
ever, they are very effective when applied on the CWT magnitude
and phase and combined with the proposed iterative procedure.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed an new iterative inpainting algorithm with
simple geometrical models of the CWT magnitude and phase. The
proposed algorithm gives inpainting results with both high PSNR
and appealing visual quality for piecewise smooth signals, textures
and their mixtures. In the future, more sophisticated models of CWT
magnitude and phase could be developed to deal with more compli-
cated image structures.
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Fig. 5. Simulation results: (a) clean images, (b) missing blocks, (c)
results of [5, 6], and (d) our results (the dB numbers in (c) and (d)
are the PSNR of the missing blocks)
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