
A NONLINEAR FEATURE EXTRACTOR FOR TEXTURE SEGMENTATION

Fok Hing Chi Tivive∗, Member, IEEE, and Abdesselam Bouzerdoum†, Senior Member, IEEE

School of Electrical, Computer and Telecommunications Engineering,
University of Wollongong

Northfields Avenue, Wollongong, NSW 2522, AUSTRALIA
∗tivive@uow.edu.au, †a.bouzerdoum@uow.edu.au

ABSTRACT
This article presents a feed-forward network architecture that
can be used as a nonlinear feature extractor for texture seg-
mentation. It comprises two layers of feature extraction units;
each layer is arranged into several planes, called feature maps.
The features extracted from the second layer are used as the
final texture features. The feature maps are characterised by
a set of masks (or weights), which are shared among all the
units of a single feature map. Combining the nonlinear fea-
ture extractor with a classifier, we have developed a texture
segmentation system that does not rely on pre-defined filters
for feature extraction; the weights of the feature maps are
found during a supervised learning stage. Tested on the Bro-
datz texture images, the proposed texture segmentation sys-
tem achieves better classification accuracy than some of the
most popular texture segmentation approaches.

Index Terms— Image texture analysis, pattern recogni-
tion, neural network architecture, nonlinear filters.

1. INTRODUCTION

Texture analysis including texture classification and segmen-
tation is an important area of research that has a wide variety
of machine vision applications, e.g., ground cover type classi-
fication of satellite imagery, industrial and biomedical surface
inspection, and content-based image retrieval. In the last two
decades, a number of texture analysis techniques have been
reported, which can be grouped into four different categories:
statistical, structural, transform-based and model-based ap-
proaches (see, e.g., [1, 2] for a comprehensive review). In
recent years, Gabor and wavelet frame decompositions have
become popular analysis tools. They have been used as fea-
ture extraction techniques in combination with a classification
technique, such as Bayer classifier, support vector machines,
nearest-neighbour classifier and neural networks, among oth-
ers, to perform texture segmentation [3, 4]. These texture seg-
mentation approaches share a common framework that inte-
grates different processing stages, as shown in Fig. 1. The
texture image is first converted into several transformed im-
ages using wavelet or Gabor filters. Then a feature extrac-

Image Transform

Stage

Feature Extraction

Stage

Classification Stage
Feature

Conditioning Stage

Input

Image

Segmented

Image

Fig. 1. A common texture classification-segmentation
scheme.

tor operates on these latter images to produce a set of feature
images that will form the basis for the classification. These
“raw” feature images are then passed to the feature condi-
tioning stage, where a smoothing filter and a nonlinear trans-
formation function are used. At the classification stage, the
conditioned feature images are arranged into feature vectors
as inputs for the classifier. When Gabor or wavelet is used
for feature extraction in the image transform stage, there is
a problem of selecting the appropriate filters from a bank of
pre-defined filters. Most often, these filters are manually se-
lected based on other existing studies. Therefore, other re-
searchers have circumvented this problem by adapting a set
of convolutional kernels as texture filters [3]. For example,
Lin and Shou [5] proposed a feature extraction method based
on cellular neural networks (CNNs), where several templates
of CNNs are selected by the genetic algorithm. They showed
that these adapted templates can be used for texture classifi-
cation with promising classification performances.

In this paper, we propose a network architecture which
is used as a nonlinear feature extractor for texture segmenta-
tion. The novelty of this approach is that the synaptic weights
of the computing element or neuron behave as an adaptive
convolutional kernel to extract features from the input image.
This alleviates the use of pre-defined filters for feature extrac-
tion. The next section gives a description of the network ar-
chitecture, its connection scheme and neuron model. Section
3 presents the training process of the network and its integra-
tion into the texture classification-segmentation scheme. The
experimental results and discussion is given in Section 4. Fi-
nally, Section 5 presents some concluding remarks.

II - 371-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

2. DESCRIPTION OF THE NETWORK

The network that we have developed to extract texture fea-
tures is a two-dimensional (2D) feed-forward neural network,
which can have several hidden layers depending on the com-
plexity of the texture segmentation problem. Herein, after
some preliminary experiments on different sizes of network,
the network has two hidden layers and one output layer. The
input layer is a 2D array of input nodes of size 15 × 15, re-
ceiving small regions of the image as inputs. The first hidden
layer (L1) has five planes of neurons and the second hidden
layer (L2) has twice the number of planes. All the planes in
L1- and L2-layers have the same size as the input layer, i.e.,
225 neurons. These planes of neurons are commonly called
feature maps [6]. Directly connecting all the neurons to those
in the following layer will however generate a large number
of trainable weights. Therefore, each neuron in a feature map
is constrained to have a set of weights to connect locally to
a small region of the previous feature map, and this set of
weights is shared among all the neurons within the feature
map, as shown in Fig. 2(a). The set of weights of the neu-
ron can be considered as an adaptive convolutional kernel to
generate the feature map in the next layer. Moreover, the size
of the convolutional kernel is varied for each hidden layer so
as to capture different textural information, i.e., a 9 × 9 for
L1-layer and a 7× 7 for L2-layer. Instead of fully connecting
the feature maps between layers, a binary-connection scheme
is employed, where each feature map branches out to two fea-
ture maps in the succeeding layer, forming a binary tree. This
connection scheme allows the feature maps in L2-layer to ex-
tract different types of local features, and subsequently re-
duces the number of connections within the network. At the
L2-layer, a 5 × 5 lowpass filter is used and a down-sampling
operation is applied to reduce the size of all feature maps to
3×3. Then, all the nine output signals from each sub-sampled
feature map are sent to the output neurons for classification.
Figure 2(b) shows the schematic diagram of the network used
as a nonlinear feature extractor. Such feature extractor has
2290 weights with 15 feature maps and five output neurons,
where the outputs of the feature maps in the L2-layer are used
as feature images.
Two types of neurons are used within the network. In

L1- and L2-layers, the feature maps consist of shunting in-
hibitory neurons. These neurons have the capability of pro-
ducing complex decision boundaries [7, 8]. The mathematical
expression of this neural model is given by

zj =

g

(�
i

wjiIi + bj

)

aj + f

(�
i

cjiIi + dj

) , for i = 1, . . . , N (1)

where zj is the activity of the jth neuron, Ii’s are the inputs,
aj is the passive decay rate, wji and cji are the connection
weights from the ith neuron in the receptive field to the jth

neuron of the feature map in the subsequent layer, bj and dj

Feature Map (plane

of neurons)

Filter Mask 3x3

Set of weights (3x3)

shares among all the

neurons

(a)

Layer 1

Layer 2

Input

Layer

Output

Layer

5 Feature Maps 10 Feature Maps

(b)

Fig. 2. The proposed neural model: (a) the local set of
weights of the neuron (convolutional mask) in a feature map
connecting to the previous feature map, and (b) a schematic
diagram of the network used for feature extraction.

are constant biases, and N is the size of the convolutional
mask. The parameters f and g are the activation functions of
the neuron: for L1-layer they are chosen as linear activation
function, except that g is bounded below by zero, and for the
L2-layer f is the hyperbolic tangent function. As mentioned
before, the sets of weights w’s and c’s are the same for all
the neurons within a feature map, and the biases and passive
decay rate are also shared among the neurons. At the output
layer, sigmoid neurons are used to receive features from the
L2-layer as inputs. Each sigmoid neuron represents a texture
class and the neuron with the maximum network response is
assumed to be the correct class. The computation of the sig-
moid neuron is to sum all the weighted input signals and pass
the net signal to an activation function to yield a neural re-
sponse, i.e.,

y = h

(�
v

wvzv + b

)
, for i = 1, . . . , N = 90 (2)

where h is a linear function, wv’s are the connection weights,
zv’s are the feature inputs, and b is the bias term.

3. TRAINING AND TESTING PROCEDURES

To train and test the network, texture images from the Brodatz
texture database have been used. This database is available
from the website in [9], which has several texture mosaics
with two or more textures. The texture images are natural
textures with different density, roughness and regularity. Each
texture mosaic has a separate set of texture images for train-
ing, as shown in Fig. 3(a). The network was trained on a train-
ing set using 2400 samples per texture image and tested on the

II - 38

(a) (b)

Fig. 3. Brodatz texture images: (a) texture mosaic 11(e)-Nat-
5m and (b) texture mosaics 11(d)-Nat-5v3. Each texture mo-
saic has a separate set of images used for training.

texture mosaic. Herein, the feature extractor was only trained
on the set of texture images of Nat-5m. Before training, the
weights of the network are initialized with random values tak-
ing from a uniform distribution on the interval [−1/N, 1/N].
The biases are initialized similarly with N = 1. According
to (1), the sum of the denominator terms can become zero
causing an error. Hence, to avoid this, a condition is imposed
on the passive decay rate during the initialization and training
process:

aj + f

(�
i

cjiIi + dj

)
≥ ε > 0. (3)

Therefore, the passive decay rate is initialized in the range
(0, 1]. The trainable weights of the network are adapted by
a supervised training algorithm derived from Rprop, Quick-
prop and SuperSAB (see [10] for more details). Each weight
update is performed after presenting all the training patterns,
and the network was trained for 800 epochs.
In our texture classification-segmentation scheme, the im-

age transform and feature extraction stages are replaced by
the trained network where the feature maps in the L2-layer
generate ten feature images. These feature images are then
smoothed at the feature conditioning stage. In this experi-
ment, seven different sizes of filter mask have been used in the
feature conditioning stage. At the classification stage, there
are two processing approaches to classify a texture pixel: pixel-
wise or region-based. In pixel-wise each texture pixel is rep-
resented by a vector of ten feature coefficients taken from
the respective feature images, and in region-based a certain
number of neigbouring pixels are included to classify the cen-
tral pixel. Hence, for the region-based processing, each tex-
ture pixel has k × k × 10 coefficients, where k is the size
of the neighbourhood. To investigate the neighbourhood size
with respect to the classification accuracy, three different sizes
have been tested, ranging from 3 × 3 to 7 × 7. For the classi-
fication scheme, a multilayer perceptron (MLP) is trained to

produce a segmented image as the output. Each output neu-
ron produces an image of network responses that can be fur-
ther post-processed with a Gaussian filter before applying the
winner-take-all scheme to create the segmented image. The
MLP used as classifier has eight hidden neurons and five out-
put neurons. The activation function used in the hidden layer
is a hyperbolic tangent function whereas the output activation
function is simply a linear function.

4. EXPERIMENTS AND DISCUSSION

The texture segmentation system is evaluated on both texture
mosaics Nat-5m and Nat-5v3, and its classification error rates
are given in Tables 1 and 2 with/without post-filtering. Tested
on the mosaic Nat-5m, the pixel-wise approach achieves a
classification error rate of 25.4% with no feature conditioning
and post-filtering, whereas for the region-based approach the
error rate is 16.4% for a 7×7 neighbourhood. However, when
the feature images are filtered at the feature conditioning stage
before the classification, there is a significant decrease in er-
ror rate. Different Gaussian masks have been used and tested,
and the mask of 15 × 15 achieves the lowest error rate of
9.9% for pixel-wise approach and 8.5% for region-based ap-
proach. In addition, post-filtering the network responses of
the MLP decreases further the classification error rate of the
texture segmentation system. Using a 5×5 input region and a
post-processing stage at the output of theMLP, an error rate of
3.8% is achieved. Another experiment was performed where
the same network has been used to do the feature extraction,
but only the MLP classifier has been re-trained on another
different training texture images, namely the texture mosaic
11(d) or Nat-5v3. From the table 2, it shows that the texture
segmentation system has an error rate of 15.2% for pixel-wise
and 8.7% for region-based after pre- and post-filtering. This
results show that the proposed nonlinear feature extractor is
capable of extracting discriminative features from the texture
images even though it was trained on a different set of tex-
tures. Figure 5 shows the segmented images of the two tex-
ture mosaics. Analyzing the adaptive convolutional masks of
the feature maps in the L2-layers, we found that the first-order
Volterra kernels (i.e., linear part) behave as directional filters,
see Fig. 4. In comparison with other existing texture segmen-
tation techniques, our approach achieves the lowest error rates
at the expense of having an additional filtering stage.

5. CONCLUSION

In this paper, we propose a network architecture as a nonlin-
ear feature extractor for texture segmentation. The weights
of the network are trained by a supervised training algorithm
and are used as convolutional kernels. These convolutional
kernels have the form of first-order directional linear filters
that have been used to produce feature images for the clas-
sification. Using an MLP as a classifier, a texture segmen-

II - 39

Fig. 4. The magnitude frequency spectrum of different con-
volutional masks of the network.

(a) (b)

Fig. 5. Samples of segmented image from the texture seg-
mentation system: (a) segmented image of Nat-5m, and (b)
segmented image of Nat-5v3.

tation system has been implemented and tested on Brodatz
texture images. Based on some difficult texture mosaics, the
proposed system achieves promising results and outperforms
some of the best existing texture segmentation methods.

6. REFERENCES

[1] A. Materka and M. Strzelecki, “Texture analysis methods - a review,”
report COST B11, Institute of Electronics, Technical University of
Lodz, 1998.

[2] M. Tuceryan and A. K. Jain, “Texture analysis,” in The handbook
of pattern recognition and computer vision, C.H. Chen, L. F. Pau, and
P.S.P. Wang, Eds., pp. 207–248. World Scientific, Singapore, 2nd edi-
tion, 1998.

[3] A. K. Jain and K. Karu, “Learning texture discrimination masks,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no.
2, pp. 195–205, 1996.

[4] B.-Y. Sun and D.-S. Huang, “Texture classification based on sup-
port vector machine and wavelet transform,” in Proc. of the 5th
World Congress on Intelligent Control and Automation, Hangzhou, P.R.
China, 2004, pp. 1862–1864.

[5] C.-T. Lin and Y.-W. Shou, “Texture classification and representation by
cnn based feature extraction,” in 2005 9th International Workshop on
Cellular Neural Networks and Their Applications, 2005, pp. 210–213.

Table 1. Classification error rates of the texture segmentation
scheme based on texture mosaic 11(e)-Nat-5m.
Gaussian Post-processed by Gaussian Filter
Mask Pixelwise Region-based Pixelwise Region-based

1 × 1 3 × 3 5 × 5 7 × 7 1 × 1 3 × 3 5 × 5 7 × 7

None 25.4 21.3 19.9 16.4 5.7 4.8 4.7 3.8
3 × 3 21.2 17.3 13.5 15.2 5.3 4.6 4.1 4.8
5 × 5 17.7 13.5 11.2 12.7 4.8 3.9 4.2 4.2
7 × 7 14.2 14.1 9.5 13.2 4.1 5.3 3.8 5.3
9 × 9 13.2 12.5 14.2 11.5 4.5 4.3 7.1 4.5

11 × 11 10.4 12.6 14.2 11.2 3.9 5.5 7.6 5.3
13 × 13 10.6 11.7 8.1 12.3 5.2 6.4 5.0 5.9
15 × 15 9.9 8.5 9.4 13.7 5.7 5.4 5.1 7.3

Table 2. Classification error rates of the texture segmentation
scheme based on texture mosaic 11(d)-Nat-5v3.
Gaussian Post-processed by Gaussian Filter
Mask Pixelwise Region-based Pixelwise Region-based

1 × 1 3 × 3 5 × 5 7 × 7 1 × 1 3 × 3 5 × 5 7 × 7

None 49.2 44.7 41.3 40.5 25.2 23.0 13.9 20.7
3 × 3 44.4 39.8 34.8 34.2 23.7 19.9 19.3 12.8
5 × 5 39.6 35.4 30.8 29.5 16.9 18.5 11.7 10.5
7 × 7 37.3 32.6 28.6 29.2 19.5 15.5 10.3 12.5
9 × 9 32.9 29.5 28.7 29.1 17.6 10.3 8.7 8.9

11 × 11 30.6 29.2 25.9 24.8 21.0 15.2 9.7 10.2
13 × 13 28.2 26.5 25.5 27.5 15.2 18.2 8.7 14.0
15 × 15 26.1 25.7 23.4 25.4 15.2 10.9 8.9 13.3

Table 3. Error rates of different texture classification ap-
proaches.

Texture classification Classification error rate (%)
approach Texture (Nat-5m) Texture (Nat-5v3)

Our system 16.4 25.2
Our system with post-filtering 3.8 8.7
Co-occurrence in [11] 35.7 51.1
diffusion-based in [12] 27.0 13.0
Wavelet - Daubechies 4(d) in [11] 21.8 23.4
Dyadic Gabor filter bank in [11] 25.2 24.6
QMF filter bank - f16b (d) in [11] 17.2 18.4

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. of the IEEE, vol. 86, no.
11, pp. 2278–2324, 1998.

[7] A. Bouzerdoum, “A new class of high-order neural networks with non-
linear decision boundaries,” in Proc. of the Sixth International Confer-
ence on Neural Information Processing, Perth, 1999, vol. 3, pp. 1004–
1009.

[8] G. Arulampalam and A. Bouzerdoum, “A generalized feedforward
neural network architecture for classification and regression,” Neural
Networks, vol. 16, no. 5-6, pp. 561–568, 2003.

[9] T. Randen, Personal homepage. Available: http://www.ux.uis.no/˜ tran-
den.

[10] F. H. C. Tivive and A. Bouzerdoum, “Efficient training algorithms for
a class of shunting inhibitory convolutional neural networks,” IEEE
Transactions on Neural Networks, vol. 16, no. 3, pp. 541– 556, 2005.

[11] T. Randen and J. H. Husøy, “Filtering for texture classification: A com-
parative study,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 21, no. 4, 1999.

[12] Xiaogang Dong and I. Pollak, “Multiscale segmentation with vector-
valued nonlinear diffusions on arbitrary graphs,” IEEE Transactions on
Image Processing, vol. 15, no. 7, pp. 1993–2005, 2006.

II - 40

