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ABSTRACT

This paper describes a method of image segmentation using re-
cursive splitting and merging based on texture similarity measures.
This technique addresses the problem of segmenting image regions
of varying texture with limited intensity edges. The proposed tech-
nique provides a framework for texture based image segmentation
that is shown to be applicable across a wide variety of image content.
The primary motivation for this work is the segmentation of infrared
images. Infrared imagery is characterized by narrow histograms cor-
responding to ambient scene temperature. Results illustrate that us-
ing texture signatures for infrared imagery yields enhanced segmen-
tation performance over luminance features. Additional benefit for
infrared imagery and better generality to other images types is ob-
tained when luminance and texture are both applied to the segmenta-
tion criteria. A method for the quantitative comparison of segmenta-
tion results is presented and benchmarks are provided against serval
recent segmentation algorithms.

Index Terms—
Image Segmentation, infrared imaging, wavelet transforms

1. INTRODUCTION

Despite the volumes of research on image segmentation, it continues
to be a challenging problem in image processing. Segmentation is
the process of dividing an image into a subset of connected regions
based on a application defined criteria. For natural scenery images,
this usually means the separation of the image into its constituent
objects or feature types (e.g. sky, trees, buildings, etc). In the case of
infrared sensors, an image is produced by mapping thermal emissiv-
ity to intensity levels. This paper overviews a technique applicable
to the segmentation of infrared imagery; however, we illustrate its
general applicability to a wide variety of image types.

Infrared imagery often is characterized by a narrow histogram
concentrated around ambient temperature in which detector and at-
mospheric noise are often present. These factors result in a diffi-
culties when a luminance and luminance edges are applied directly
to segmentation. We illustrate that a combined texture and lumi-
nance based approach, using a wavelet-based watershed, results in
improvements in initial segmentation. We propose a combination of
splitting and merging to reduce the over segmentation of the water-
shed and capture texture edges. We also apply a unique cost function
for automatic merging termination.

1.1. Related Works

Three main classes of methods for texture based segmentation have
emerged in recent years: model based, global cuts/ graph partition-
ing, and split-merge based methods. The model based methods strive
to capture the underlying structure of the texture and classify image

pixels in to different segmented regions. A variety of different mod-
els are used for this method including Hidden Markov Models [1],
anisotropic diffusion models [2], and general statistical models [3]
based on filter responses. The global cut method for image seg-
mentation uses a criteria to find the lowest cost cut in an image [4].
Similar to the model based approach, the underlying image struc-
ture is ignored in the graph partitioning approach. Also, once a cut
is made it is used in the final segmentation, often leading to over-
segmentation. Finally, there are various methods of image segmen-
tation that are so called top down splitting approaches. Many of these
methods are based on the popular watershed transform [5]. The wa-
tershed is popular because it easily produces connected regions. The
drawback of these methods is the potential for over segmentation.

1.2. Paper Organization

Section 2 contains an overview and details of the proposed algo-
rithm. Sections 3 and 4 provide implementation details for the se-
lection of texture features and termination criteria respectively. Sec-
tion 5 contains quantitative results of the proposed method compared
with three recent segmentation algorithms. Quantitative segmenta-
tion performance is presented for grayscale and infrared imagery .
Section 6 contains a general discussion of results.

2. PROPOSED METHOD

This section contains an overview of the proposed algorithm de-
picted in Fig. 1. A edge enhancing noise reduction filter is applied
as a preprocessing step to remove gradient noise and enhance weak
edges. The initial segmented edge image is extracted using a combi-
nation luminance and wavelet based gradient method. A watershed
is then applied to the edge image to obtain an initial connected region
segmentation map. Iterative cuts are formed from this segmentation
image to capture remaining texture edges that may have been lost
in the initial watershed. Iterative merging based on a similar texture
and luminance criteria is then applied to reduce over segmentation.

2.1. Watershed Preprocessing for Edge Enhancement

As a first stage of the segmentation problem it is often necessary
to enhance the main edges of the image while rejecting much of
the gradient noise that leads to over segmentation. In this regard, a
lower-upper-middle (LUM) filter was chosen [6]. The LUM filter
has several advantages including its ability to perform edge enhanc-
ing and noise rejection simultaneously.

2.2. Edge Image Computation and Watershed

The proper computation of the edge image is essential to obtaining
acceptable performance during the merging. The initial partition-
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Fig. 1. Block Diagram of Proposed Segmentation Method

ing of the image into regions is accomplished using the watershed
transform as proposed by Vincent and Soile [5]. In our case, the
boundaries of these water sheds (or catchment basins) are formed
based on the wavelet texture gradient computation as formulated by
Mallat [7].

2.3. Wavelet Transform

Various methods have been employed for texture analysis. These
techniques include frequency, model-based, statistical, and geomet-
ric approaches to texture feature extraction. The wavelet approach
is a very desirable form to extract texture features since it contains
separated frequency, scale and direction information [8]. The un-
decimated wavelet transform was chosen for this application since
it allows a direct feature extraction without scaling. Since all sub-
bands share a common resolution, they can be used directly without
constant resolution changes for each region. Several wavelets were
used for the transform to compare the relative performance of the
texture extraction. Consistent with [9] the results did not vary sig-
nificantly with the wavelet used.

2.4. Region Adjacency and Similarity Merging

An initial region adjacency graph (RAG) is formed that provides a
table of all regions that share a border in the initial watershed seg-
mentation by using the method outlined by Haris et al. [9]. For each
entry in the RAG a dissimilarity measure was formed

δ(Rg, Rh) =
‖Rg‖ · ‖Rg‖
‖Rg‖ + ‖Rg‖ · |M(Rg) −M(Rh)| (1)

where, δ(Rg, Rh) is the dissimilarity between regions Rg and Rh,
M(Rh) is the texture measure for Rh, and ‖Rh‖ is the number of
pixels in region Rh.

The RAG is scanned for the minimum dissimilarity (δ) and the
two regions corresponding to lowest dissimilarity are combined.

2.5. Region Partitioning

The process of region splitting can be thought of as the inverse of the
iterative merging process. Each region in the image is analyzed for
the cut that maximizes the dissimilarity measure provided in section

Fig. 2. Texture performance measure comparisons

3. A cut is a segmentation of the region into two distinct regions Rg

and Rh such that Rg ∩Rh = ∅ and Rg ∪Rh = R∗ where R∗ is the
original image region.

The maximum cut is determined for each region in the image.
The global maximum cut for all regions is selected. The regions that
correspond to this cut are segmented. Next, new cuts are determined
for these two new regions. The global maximum cut is then selected.
This process of cutting repeats iteratively for a specified number of
iterations or until some minimum dissimilarity is reached.

3. TEXTURE FEATURES FOR SEGMENTATION

Following the initial watershed segmentation, Iterative merging of
adjacent regions is applied based on a similarity measure. Sev-
eral texture-based similarity measures were chosen for considera-
tion. This selection was primarily based on the observation that the
initial segmented image contains many small regions. Many texture
methods rely on accumulating statistical feature over a larger area
and provide unstable texture measures as the region size is reduced.
In addition, the methods chosen must be readily applied to irreg-
ularly shaped regions. The texture measures chosen were wavelet
sub-band energy, wavelet sub-band mean difference, wavelet sub-
band histogram signatures, and Renji entropy [10] [11]. All of these
measures can be applied to an irregularly shaped region and are po-
tentially scale and rotation invariant.

The evaluation of these texture measures was performed on a
typical texture test image from the Brodatz texture library contain-
ing 16 textures [12]. The texture feature for each of the test image
regions was formed and normalized. A difference matrix is formed
showing the difference in the texture measure between each test re-
gion. The mean values of the difference graphs are then extracted
for each measure to provide an overall dissimilarity performance
measure. Fig. 2 shows these measures which were produced with
several sizes to obtain a determination of robustness across region
area. The Mean difference was selected, because it provides a sta-
ble texture difference measure across region size. This is crucial in
the merging process, since the regions start out with small watershed
segmented regions and combine to form larger homogenous texture
regions. In addition to the Brodatz test pattern, a similar texture
test pattern was extracted from various infrared images. The results
again indicated that the mean difference is the preferred discriminat-
ing measure across a wide variety of region sizes.
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4. MERGING TERMINATION CRITERIA

A typical problem in iterative based segmentation techniques is the
determination of the appropriate iteration to terminate the merging
process. This is often performed manually for a given image set by
running a series of experiments. We have developed a method to
automatically terminate merging based on a cost function consisting
of region number and edge coincidence.

Edge-Border coincidence is a measure of the overlap of the fi-
nal merged region borders to the edges found by an edge operator.
The coincidence measure is determined as follows: Let E be the
set of pixels extracted from the edge operator after thresholding. E
is a binary edge image. Let S be the binary image that contains
the edges from the segmentation and merging procedure. Then the
edge-border coincidence (CEB) is given by:

CEB = 1 − n(S ∩ E)

n(E)
(2)

n(A) is the number of elements of the set A.
Boundary Consistency/Edge Penalty is a performance measure

similar to the edge-border coincidence except that the region borders
that do not coincide with edges are used to penalize the segmentation
quality:

CBC = 1 − n(S∩ ∧
E)

n(E)
(3)

Finally, the a simple cost is formed as the number of regions. This
cost decreases linearly with decreasing number of regions in the
merged image. This region cost, CR, is computed as the ratio of
the number of segmented regions to the total number of regions in
the initial segmentation.

The merging costs functions described are combined to form a
single termination cost, CT , as a simple linear combination given by

CT = CR + CBC + CEB (4)

Merging is terminated when the cost reaches a minimum value. The
termination criteria was tested against a variety of images and will
be represented in the examples shown in later experimental results.

5. SIMULATION PERFORMANCE RESULTS

The performance of segmentation algorithms are often difficult to
characterize due to the subjective nature of the results. This section
provides a quantitative description of the segmentation performance
based on the Berkeley Segmentation Database [13]. Martin et al.
developed a framework in which segmentation performance can be
quantified and benchmarked across many methods. They assert that
a generalized approach to ground truth for a segmentation result is
that developed by a human subject.

5.1. Segmentation Performance measures

In addition to the library of segmentation ground truth, Martin et
al. also suggested two measure for segmentation performance called
the Global Consistency Error (GCE) and Local Consistency Error
(LCE). These measures seek to determine the consistency between
regions formed in the benchmark set and the results of the segmenta-
tion routines. Both measures start by forming a set of error images,

E(S1, S2, pij) =
‖ R(S1, pij) \R(S2, pij) ‖

‖ R(S1, pij) ‖ (5)

where S1 and S2 are the segmentations to be compared, pij the pixel
location corresponding to i and j the row and columns indices, and
R the segmented region. The GCE is formed by the global minimum
of the error image sum scaled by the number of pixels,

GCE(S1, S2) =
1

i · jmin
ij

E(S1, S2, pij),
ij

E(S2, S1, pij)

(6)
while the LCE is sum of the pixel-wise minimum of the error images
scaled by the number of pixels.

LCE(S1, S2) =
1

i · j
ij

min E(S1, S2, pij), E(S2, S1, pij)

(7)

Although GCE and LCE provide measures of the overall region
matching between the intended and test segmentation; they do not
provide a direct measure of the accuracy of the region boundaries
or the amount of erroneous edge content. This factor is important
in many applications thus two additional measures are introduced;
Edge Detection Rate

ED(S1, S2) =
‖ EI(S1) ∩ EI(S2) ‖

‖ EI(S1) ‖ (8)

and edge false alarm rate.

EFA(S1, S2) =
‖ EI(S1) ∩ EI(S2) ‖

‖ EI(S2) ‖ (9)

5.2. Segmentation Performance Comparison

The quantitative segmentation performance has a context only in
comparative benchmarks of the same image with different segmen-
tation schemes. Three methods were chosen for comparison with
the proposed method: Shi and Malik’s [14] method of ratio cuts, the
local variation segmentation of Felzenszwalb and Huttenlocher [15],
and the mean shift based segmentation method of Comanicu and
Meer [16]. A cross section of images were chosen for testing that
contained high, moderate and low scores in terms of the provided
benchmarks. In order to summarize the results, the the four quanti-
tative performance measures are determined and normalized for each
image and averaged; resulting in a single number for each measure
(1=best, 0=worst) summarized in table 1.

Table 1. Berkeley Data Set Normalized Performance
Measure Proposed Ratio Cut Local Var. Mean Shift

GCE 0.796 0.337 0.480 0.387

LCE 0.524 0.125 0.581 0.770

ED 0.885 0.021 0.259 0.836

EFA 0.953 0.172 0.270 0.605

Unfortunately, the Berkeley dataset does not contain reference
infrared images for benchmarking, so set of hand labeled infrared
imagery was created by human subjects in a fashion similar to the
Berkeley dataset. Fig. 3 shows the images used, their hand segmen-
tations, and corresponding segmentations applying the four methods.
Table 2 provides the normalized results for the infrared images. As
expected, the results achieved on infrared imagery are superior since
the proposed method has been optimized for infrared imagery. The
proposed technique far exceeds all others in every measure with the
exception of the mean shift in edge detection performance. The high
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Fig. 3. Infrared Image Segmentation Results

Table 2. Infrared Normalized Performance
Measure Proposed Ratio Cut Local Var. Mean Shift

GCE 0.762 0.478 0.431 0.328

LCE 0.801 0.391 0.322 0.486

ED 0.816 0.218 0.017 0.948

EFA 0.993 0.559 0.201 0.247

performance in edge detection in the mean shift is largely due to
the many superfluously edges created in the segmentation; thus its
likewise poor performance in edge false alarm rate.

6. CONCLUSIONS

The method of image segmentation presented is based applying tex-
ture based watersheds, splitting, and merging. In particular, a texture
based method is chosen to compensate for the often poor areas of
contrast in infrared imagery. Experimental results when these tech-
niques are applied to a variety of imagery are given. In particular,
test patterns from the Berkeley segmentation database where tested
against three recently developed segmentation algorithms. The quan-
titative results based on four segmentation performance measures
showed that the proposed method resulted in greater performance.
In addition, when the infrared imagery was tested using the same
method the results were even more disparate with the proposed al-
gorithm clearly outperforming the three test methods. It should also
be noted that during testing the other algorithms had to be executed
numerous times to obtain valid results. This is due to the fact that
there is no automatic stopping criteria for the other methods. In addi-
tion, the other methods tested had numerous parameters that needed
to be adjusted for the different image types to obtain a result that was
comparable in terms of the number of segmented regions. The pro-
posed algorithm not only outperformed these methods, but obtained
all parameters directly from the input imagery. Also, the automatic
stopping criteria used resulted in overall good segmentation outputs
for a wide variety of input imagery. The combination of the unsu-
pervised nature and high segmentation performance across a wide
variety of image types show the desirability of this algorithm not
only to infrared imagery, but to the general class of segmentation
applications.
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