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ABSTRACT

Many natural textures comprise structural patterns and show

strong self-similarity. We use affine symmetry to segment

an image into self-similar regions; that is a patch of texture

(blocks from a uniformly partitioned image) can be trans-

formed to other similar patches by warping. If the texture

image contains multiple regions, we then cluster patches into

a number of classes such that the overall warping error is

minimized. Discovering the optimal clusters is not trivial

and known methods are computationally intensive due to the

affine transformation. We demonstrate efficient segmentation

of structural textures without affine computation. The algo-

rithm uses Fourier Slice Analysis to obtain a spectral con-

tour signature. Experimental evaluation on structural textures

shows encouraging results and application on natural images

demonstrates identification of texture objects.

1. INTRODUCTION

Texture segmentation is a well-researched topic in image pro-

cessing. It has been studied for decades and utilised in many

applications including tracking, surveillance, medical imag-

ing and robot navigation. Texture is an ambiguous term but

there are two prominent definitions. One defines a primitive

individual element, texton that comprises texture, e.g. blob on

jaguar. The other derives primitive statistical feature vectors

from a group of pixels where the visual element is difficult to

observe, e.g. the texture of grass. In this work, we consider an

approach based on the texton that exhibits a structural pattern.

This follows from an observation that many natural textures

comprise structural patterns and show strong self-similarity.

We attempt to capture the self-similarity by affine symmetry;

that is a part of a texture region can be warped to approxi-

mate other parts. Previously, Wilson and Li [1] performed

texture segmentation using the same principle and demon-

strated promising results. They used the warping error as one

of the distance metrics in their Markov random field frame-

work. The method required considerable computation as the

affine transformation of all pairs of patches was computed.

Later, Bhalerao and Wilson [2] reduced the computation by

adopting the Fourier power spectrum as a single long fea-

ture vector and achieved invariance by having an affine sym-

metric group of blocks as centroid, the members of which

were derived from a single block by scale and orientation

change. However, both approaches require manual selection

of the initial prototypical blocks. Park et. al [3] showed un-

supervised block classification based on the number of direc-

tional features using independent component analysis (ICA).

We present a texture segmentation algorithm that is affine in-

variant, requires less computation and is unsupervised.

Section 2 covers affine invariant feature extraction. Sec-

tion 3 illustrates the overall process. Section 4 reports the

experimental results. Lastly, conclusions are drawn.

2. AFFINE INVARIANT FEATURES

We present an efficient and affine invariant feature based on

directional information of the texture pattern. We employ the

Fourier transform with a cos2 window to capture directional

features. The directional information is then extracted from

the local spectrum using Fourier Slice Analysis. The extrac-

tion proceeds as follows:

1. Apply Fourier transform to texture block

2. Extract contour signature using Fourier slice analysis

3. Extract affine invariant features from the signature us-

ing Fourier description

An analogous approach [4] was suggested in 80s, which was

developed for remote sensing of terrains but different in the

contour definition.

2.1. Fourier Spectrum

A general affine transformation T in R2 space is define as

T (x) = Ax + t (1)

The Fourier transform is well utilized in [1, 2] to separate the

affine transform, T into a linear part, A which affects only

the magnitude spectrum linearly, and a translational part, t
that is exhibited as a phase gradient. This implies that we

can analyze deformation of texture in the frequency domain,
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Fig. 1. Structural texture samples: brick, weave, reptile and the same sample with white Gaussian noise (5dB) (top) and

Fourier magnitude spectrum of the texture and extracted shape (bottom)

regardless of translational difference. We extract a contour

signature from the local magnitude spectrum, which is then

described by an affine invariant descriptor.

2.2. Fourier Slice Analysis

The radon transform integrates a 2D function f(·) over a set

of lines in the angle θ between the line and the axis. The trans-

form reveals the directional strength of the texture pattern. A

similar analysis with the Fourier transform is possible by the

projection-slice theorem. The theorem states that an angu-

lar slice through the origin at angle, θ of the Fourier trans-

form (Fourier Slice) is the Fourier transform of the Radon

projection at angle θ. The slice analysis involves the compu-

tation of projection r(θ) for 0 ≤ θ < π and
√

x2 + y2 ≤
blocksize/

√
2, which resulting an adaptively shaped closed

contour. The contour signature, S, consists of a set of points

as below

S = {[r(θ) cos θ, r(θ) sin θ]T }
r(θ) = c ·

∑ ∑
|F (x, y)|δ(x cos θ + y sin θ)/eσ2

(2)

where c and σ2 indicate a normalization constant and the vari-

ance of the half Fourier slice, respectively and eσ2

is the regu-

larity term that reflects the strength of harmonic signal. Fig.1

shows the sample texture in the top row and the extracted di-

rectional shapes. The right three texture samples are identical

to those on the left except for the addition of white Gaussian

noise (5dB). As shown, the extracted shapes (red) are consis-

tent regardless of the presence of noise.

2.3. Extraction of Affine Invariant Feature

Given a contour signature, its constituent boundary pixels C-

={[x(t), y(t)]T} are traversed to yield a parametric equation

based on the affine length of a closed curve, as below. This

is linear under affine transformation and also yields the same

parameters, independent of the initial representation.∫
C

3

√
ẋ(t)ÿ(t) − ẏ(t)ẍ(t)dt (3)

where the number of dots indicate the order of the derivatives.

Having encoded the boundary as a function of the parameter,

taking the Fourier transform of the boundary equation results

in [U, V ]T , where U and V are Fourier coefficients refer-

ring to the x and y coordinates respectively. Since the Fourier

transform is a linear operator, the equation below holds

[Uk, Vk]T = A[U0
k , V 0

k ]T (4)

where [U0, V0]
T denotes the same coefficients from the affine

transform of the reference block. By including another coef-

ficient and extending eq.(4) to a 2 × 2 matrix, obtaining their

determinants reveals a linear factor. A simple division of both

sides by either side produces an absolute affine invariant fea-

ture. For more details, readers are referred to [4].

3. AFFINE INVARIANT CLASSIFICATION

This section shows the overall workflow of our segmentation

algorithm. Regarding the window size for texture analysis,

there is a problem known as the class-boundary uncertainty

i.e. if we confine the analysis to a small window, we get a

better resolution of segmentation but we lose confidence of

the texture characteristics within the window. On the other

hand, a larger window allows a better analysis of texture but

results in a coarse resolution of segmentation. An solution is

to employ a multi-resolution approach. Texture information

at the top level passes down to the lower level and is com-

bined recursively as it proceeds. We use the Multi-resolution

Fourier Transform (MFT) [5] as given below. For a given

scale(σ), frequency(ω), position(ξ) and image f(ξ), the 2D

MFT is defined as,

F (ξ, ω, σ) = det(σI)
1

2

∫ ∞

−∞

w(σI(x − ξ))f(ξ)e−jωxdx

(5)

where w denotes an appropriate window function as given

below and I is the identity matrix.

w(x) = cos2[πp/2B] cos2[πp/2B] (6)
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Fig. 2. Segmentation test of texture composites: texture composite and classification result in pairs, white Gaussian noise

(15dB) is added to both texture samples

where x = [p, q]T and B is the block size. Having applied

the MFT to a source image, the affine invariant features are

extracted from the Fourier spectrum at each scale as described

in section 2. The resultant features, v at the bottom scale are

joined together with the quadtree parent as follows:

Feature(i, j) = {pl(V )|0 ≤ l ≤ k}
pl(Vi,j) = V�i/2k�,�j/2k� Vi,j,k = wk × {vi,j,k} (7)

where wk and k refer to a weight and scale respectively. The

combined features are fed into a K-means clustering algo-

rithm. Prior knowledge of the number of classes is required

due to the nature of the algorithm. The K-means clustering is

chosen only for simplicity as our main focus is to determine

an effective affine invariant feature. A random field approach

may be of interest if convergence of the number of classes is

desired [1, 6].

3.1. Selection of Representative Block

The convex hull-area ratio is a new metric for selection of the

most representative texture block in a class. It can reveal the

strength of directional patterns in the block. This follows the

similar idea in [3], where a simple isometric measure based on

PCA was used to determine the most representative block in a

class under two observations. One is that a block with strong

directional pattern and high contrast produces less warping er-

ror. The other is that only a simple directional pattern is likely

to exist as we constrain the window size (16× 16). However,

as the window size increases, the metric does not work well

due to the lack of ability to deal with the mult-directional fea-

tures. The new metric can indicate the strength of directional

pattern well and it can also be computed efficiently by a Gra-

hams scan. Given a set of points, s , the convex hull ? area

ratio, R, is given as

R(s) =
Area(s)

Area(ConvexHull(s))

Area([x, y]T ) =
1

2

N−1∑
i=0

xiyi+1 − xi+1yi (8)

where N denotes the number of points. The convex hull of

the shape is shown in (green) in Fig.1.

4. EXPERIMENTS

To illustrate the effectiveness, the algorithm was tested us-

ing simple composites of sample structural textures to which

Gaussian noise (15dB) was added, as shown in Fig.2. The

contour signature extraction in the presence of noise is illus-

trated in Fig.1.

Firstly, it is observed that the signature extracted from the

Fourier transform is too jagged in the case of a severe level of

noise (0dB) due to the scattered high-frequency coefficients,

which in turn disrupts the affine invariant description and re-

sults in a poor clustering. Consequently, the scattered high-

frequency coefficients are removed using minimax threshold-

ing before the Fourier slice projection and the Gaussian smooth-

ing filter is applied to the shape boundary. This, in fact, makes

the shape-extraction robust to noise. The classification result

shows the extracted shapes colored according to classes in

Fig.2.

Secondly, many contour signatures from the bottom level (16×
16) of the MFT were elliptical, which makes affine invariant

shape description useless. Starting with a window of 32 × 32
at the bottom level still produces an acceptable result. How-

ever, we have found that using the area of the contour at the

bottom level feature produces a better result. This is because

the shape size increases with the strength and directionality of

the feature and decreases as the directional pattern becomes

less significant. It is probable that different textures with the

same number of directional features fall into the same class,

but it is the most information we can gather at the bottom

level. The structural information from a bigger window is

passed on from the parent block and combined together as

discussed Section 3.

Having successfully tested the algorithm on the sample test

image set, the natural images, jaguar and zebrawere used

as shown in Fig.3. The segmented texture was obtained by

application of region growing from the block classification.

The jaguar blob texture is segmented well, but there are some

holes in the zebra stripes segmentation that result from the

smaller window size (no texture in a window), compared with

the bold stripes of the zebra. To see if the block classification

result is indeed affine symmetric, the image is reconstructed
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Fig. 3. Block classification test on natural images: jaguar (top) and zebra (bottom), original image, classification result,

segmentation and reconstruction (by column)

by selecting a prototypical block in each class as described

in Section.3.1 and replacing other blocks by the affine trans-

formed prototype. The affine model is estimated using the

two-component method [7, 3] and the prototype blocks are

chosen by eq.(8). A non-affine invariant classification would

have resulted in an odd image, for instance, the log featuring

blobs of the jaguar. The reconstruction quality varies around

25dB in PSNR and is visually acceptable. This work not only

presents an interesting approach to the segmentation task but

also offers a feasible solution for efficient implementation.

We intend to employ the algorithm in our affine image coding

system described in [3].

5. CONCLUSION

Affine invariance has received much attention with the re-

cent emergence of content based retrieval systems. The un-

derlying concept has been applied to texture segmentation by

many researchers. The complexity of the algorithms, how-

ever, has been a major issue in prohibiting their practical im-

plementation. Our motivation has been to develop a computa-

tionally efficient image texture classification algorithm while

maintaining the texture discriminative power of previous ap-

proaches. We have demonstrated a simple and efficient ap-

proach utilizing affine invariant shape description. Experi-

mental evaluation indicates acceptable segmentation results

for structural texture such as brick wall, jaguar and reptile

skin, and also the algorithm’s robustness to noise. Further

study using a random field may improve results. The pre-

sented work may be of interest where efficient texture seg-

mentation is demanded.
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