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ABSTRACT 

 

Texture identification can be a key component in Content 

Based Image Retrieval systems. Although formal definitions 

of texture vary in the literature, it is commonly accepted that 

textures are naturally extracted and recognized as such by 

the human visual system, and that this analysis is performed 

in the frequency domain. In this work, a feature extraction 

method is presented which employs a discrete Fourier 

transform in the polar space, followed by a dimensionality 

reduction. Selected features are then processed with vector 

quantization for the supervised segmentation of images into 

uniformly textured regions. Experiments performed on a 

standard test suite show that this method compares 

favorably to the state-of-the-art and improves over 

previously studied frequency-domain based methods. 

 

Index Terms— Image texture analysis, Pattern 

classification   

 

1. INTRODUCTION 

 

Texture analysis plays an important rule in computer vision 

and many image processing applications such as texture-

based image retrieval. The extraction of metadata based on 

the identification of texture can be used as an important tool 

to improve the performance of Content Based Image 

Retrieval (CBIR) systems. The general problem is 

identifying images in a database (e.g., digital library, 

medical, or scientific database) of similar content, given a 

sample image or sample image content. Manual annotation 

of image data is often unfeasible (because of the amount of 

data involved) and unreliable (since it may be impossible to 

predict which characteristics of the image are relevant to the 

search). Methods to automatically extract information from 

images have been developed in the past, in order to produce 

metadata annotation for CBIR. Most of these methods are 

based on statistical distributions of the gray-scale value or 

the color value of single pixels. These methods have 

achieved good performance in many circumstances, but the 

main drawback is that the gray-scale and color distribution 

values are identical for a number of dramatically differing 

spatial arrangements of pixels. While there is no agreement 

on a formal definition of texture, it is commonly accepted 

that textures are naturally extracted and recognized as such 

by the human visual system. It is also widely believed that 

the visual system extracts relevant features in the frequency 

domain, independently of their illumination and the 

presence of noise. Furthermore, human experiments have 

revealed that the visual cortex contains orientation and scale 

band-pass filters for vision analysis. Unfortunately, previous 

attempts to classify textures in the frequency domain have 

shown inferior performance with respect to statistical 

methods. Based on these motivations, we propose a 

classifier that combines vector quantization (VQ) with a 

feature extractor operating in the frequency domain. Our 

method compares favorably with the state-of-the-art and 

improves over previously proposed frequency-based 

methods. 

 

2. PREVIOUS WORK 

 

Despite many attempts to define texture, vision researchers 

have not yet produced a universally accepted formal 

definition. Mathematical models have been proposed in an 

attempt to converge on a unified definition, and properties 

such as uniformity, density, coarseness, roughness, 

regularity, linearity, directionality, direction, frequency, and 

phase are known to play an important role in the description 

of a texture. Based on these properties, a variety of feature 

extraction techniques have been studied. Tuceryan and Jain 

[1] identify four major feature extraction methods in texture 

analysis: statistical, geometric, model-based, and signal 

processing based.  

Randen and Husøy [2] extensively studied filter banks 

and compared these methods using the same system setup. 

The filters that have been compared are: Laws filter masks, 

Ring and Wedge filters, Dyadic Gabor filter bank, Wavelet 

transform, Discrete Cosine Transform, Quadrature Mirror 

filters, and the Tree-Structured Gabor filter bank. 

Performance was also compared to two popular methods 

that did not involve filtering; the first, using the co-

occurrence matrix, the second, based on an autoregressive 

model. Randen and Husøy concluded that different filtering 

methods yield different results for different images, i.e. 

there was no single method that performed the best for all 

the images. Furthermore, they identified that because of the 

large number of features, the computational complexity is 
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typically very large in both feature extraction and 

classification. Therefore, a low feature vector 

dimensionality, maximized feature separation, and in some 

cases, a simpler classifier are highly preferable.  

Randen and Husøy’s results were improved by Mäenpää, 

Pietikäinen, and Ojala [3] using the Local Binary Pattern 

texture operator (LBP), introduced by Ojala, Pietikäinen, 

and Harwood [4]. LBP is a statistical feature extractor that 

has been successfully used in several classification and 

segmentation problems. LBP classifies textures by 

comparing quantized histograms with a log-likelihood 

measure. LBP preserves information on the texture’s spatial 

distribution, and is invariant to all monotonic gray scale 

transformations. A multi-scale version of LBP has also been 

studied [3]; MP-LBP combines texture information 

extracted at different resolutions. 

Recently, several authors have studied the use of VQ to 

classify textures [5], [6]. Direct comparison with these 

proposals is difficult because the results have not been 

assessed with a comparable methodology.  

To overcome this problem, in our experiments, we have 

used a problem set, first used by Randen and Husøy [2] and 

later by Mäenpää, Pietikäinen, and Ojala [3]. This test suite 

is now part of Outex [7], a unified framework designed for 

the empirical evaluation of texture analysis algorithms.  

 

3. PROPOSED METHOD 
 

Textured images are classified here with a supervised 

segmentation approach. Texture features are extracted in the 

frequency domain and classified with a vector quantizer. In 

supervised segmentation, the classifier is first trained on 

texture samples, and then tested on images composed of 

texture compositions.  
 

3.1. Training 

 

Training aims at extracting a small set of significant and 

discriminating features from texture samples. The features 

extracted characterize textural properties of the training 

samples. The basis for the classification consists of a set of h 

features extracted from n training images, which are formed 

by textures belonging to k different classes. Feature 

extraction maps raw pixels to a feature space, and the 

performance of the feature extractor will greatly influence 

the correct classification rate. Features are collected on a 

pixel-by-pixel basis, with large textures being randomly 

sampled to contain memory usage and computational 

burden. Features for a pixel (xi, yi) are collected from a 

window W of wsize
2
 neighbor pixels. The square window is 

weighed by a 2-dimensional Hamming window before the 

application of a 2D Fourier transform (FT), after which the 

magnitude of the coefficients is further transformed into 

polar coordinates:  

FPW r,( ) = W x, y( )e
ir xcos +ysin( )dxdy  

The use of a frequency-domain method has been preferred 

because it is consistent with the findings of researchers in 

biological vision (see for example [8-11]), and the mapping 

into polar coordinates has been found to improve the 

precision of the classifier on the test problems. We speculate 

that this is due to an improved directionality of the system. 

While the FT and the polar mapping can be combined to 

extract features that are invariant to translation and rotation, 

the way polar coordinates are being used here has proved 

experimentally to produce slightly better results than this 

more traditional combination of transforms.  

Capturing textural features requires a large window and 

results in feature vectors having many components. Besides 

the obvious issues of time and space complexity, the 

components of these vectors are often highly correlated or 

not useful to the classification. We have experimented with 

two techniques for dimensionality reduction: the Principal 

Component Analysis (PCA) and the Fisher coefficients. 

PCA performs an orthonormal transformation on the feature 

space that retains only significant eigenvectors of the whole 

dataset, called principal components. The feature space is 

transformed and information is compacted into the smallest 

number of dimensions by discarding redundant features. 

PCA reduces the number of dimensions without considering 

their contributions to the classification.  

A complementary approach, which ranks each feature’s 

contribution to the classification without exploiting feature 

correlation, uses the computation of the Fisher coefficients. 

Fisher coefficients measure the discriminative power of 

each feature, so that dimensions that do not help with the 

classification can be safely discarded. Fisher coefficients are 

defined as the ratio of between-class variance to within-class 

variance: 

F =
D

V
=

1

1 Pk
2

k=1

K PkPj μk μ j( )
2

j=1

K

k=1

K

PkVk
k=1

K
 

where D denotes the between-class scatter, V denotes 

within-class variance, μk ,Vk mean and variance of class k, 

and Pk the probability of class k [12]. 

Unlike PCA, Fisher coefficients are computed 

independently on each dimension, so they do not provide 

any information on how to discard correlated features. The 

use of Fisher coefficients is less aggressive than PCA in 

reducing dimensionality, however, it has the advantage of 

requiring very little computation during the training and no 

computation at all during the testing. 

Training our classifier consists of finding, for each 

sample class, a small set of “typical” feature vectors that can 

be compared to an unknown signature. For this reason, we 

employ a vector quantizer that determines, for each class, a 

small set of centroids. Centroids are computed so that they 

minimize the Mean Squared Error with the feature vectors 

collected for each sample texture. 
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Figure 1. Overlapping quadrants in a Kuwahara filter. 

 

3.2. Testing 
 

In the testing, the performance of the proposed method has 

been assessed by classifying a number of unknown images 

(also called problems). The segmentation of the problem is 

done on a pixel-by-pixel basis. A window of wsize wsize 

pixels is centered on the pixel being classified, and textural 

features are extracted as described in the previous section. 

The dimensions of the feature vector are reduced, and the 

result is compared to the centroids of each class. The class 

associated to the closest centroid is finally assigned to the 

pixel. 

Performance is assessed by counting the number of pixels 

correctly classified. By assuming that adjacent pixels are 

likely to belong to the same texture, the classification 

performance can be improved with a post-processing filter. 

The simplest method uses a smoothing (low-pass) filter on 

the result of the classifier. The smoothing filter must 

preserve edges of the segmented areas, and the filter 

introduced by Kuwahara, et al. [13], is an example of such 

edge-preserving filter. As depicted in Figure 1, the 

Kuwahara filter divides a square neighborhood of each pixel 

into four overlapping quadrants, each containing the central 

pixel. For each quadrant, the mean and the variance of the 

pixel values are computed; then the value of the central 

pixel is replaced by the mean of the quadrant having 

smallest variance. 

We aim at filtering segmentation maps consisting of 

texture indices, not natural images for which the Kuwahara 

filter has been designed. Indices don’t have a physical 

meaning, so determining mean and variance of the 

quadrants is not appropriate. It is possible however to use 

the same strategy and compute the histogram of the indices, 

and the entropy of the values in each quadrant. Our 

Kuwahara-like filter replaces the central index with the 

highest-frequency index belonging to the quadrant with the 

smallest entropy.  

 

4. EXPERIMENTAL RESULTS AND CONCLUSIONS 

 

We have compared our results to the results of Randen and 

Husøy [2] and Mäenpää, Pietikäinen, and Ojala [3], on the 

same test suite they have used in their work. The test suite is 

based on images from three texture databases: the album of 

Brodatz [14], the MIT Vision and Modeling Texture 

Databases
1
, and the MeasTex Image Texture Database

2
. The 

use of images acquired under different conditions and with 

different equipment increases the complexity of the task. 

Textures are all gray-scale, and have equalized histograms. 

The test images, called problems, combine 2 to 16 sample 

textures and have size 256 512 (2 textures), 256 256 (5 

textures with straight and round borders), 256 640 (10 

textures with simple borders), and 512 512 (16 textures 

with complex borders). To each texture in a problem is 

associated a 256 256 training sample, that is similar, but not 

identical, so that unbiased error estimate can be obtained. 

Texture segmentation identifies regions of uniform 

texture. Segmentation quality depends largely on the size of 

the window W. While a larger window captures textural 

features at different scales, a small window is preferred 

during the test since it allows a more precise localization of 

the boundaries between adjacent regions. Choosing the 

optimal window for a given set of textures is not a trivial 

task. A multi-resolution approach, fully compatible with our 

method, could be used to entirely avoid the problem.  

However, for simplicity, we have tested our method on 

windows having a fixed radius of 20 pixels (wsize = 41), a 

size already suggested in [3]. 

PCA and Fisher coefficients are both effective at 

compacting the feature vector while retaining its 

discriminative power. Selecting the coefficients so that the 

cumulative sum of their magnitude is not greater than 98%, 

reduces the number of features by an order of magnitude 

with the PCA, and by about one third with Fisher. 

Empirically we found 4 centroids per texture sample to 

be sufficient to achieve competitive results while containing 

the complexity of the training. 

Figure 2 shows the classification obtained by our 

algorithm on problems P1, P6, P9 and P10, respectively 

containing 2, 5, 10, and 16 textures. As one might expect, 

error concentrates at the region boundaries.  

Table 1 compares classification rate with the results 

reported in [2] and [3]. On average, our method, depending 

on the use of PCA or Fisher, improves respectively by 8.9% 

to 10.1% over Randen and Husøy (which also use spatial 

filtering) and by 1.4% to 2.5% over Basic LBP (which is 

based on statistical texture representation).  

The classification rate of our method is also roughly 

comparable to Multi-Predicate LBP, a more complex 

approach that combines features collected at multiple 

resolutions. 

The improvement over Randen and Husøy [2] is 

noteworthy since, they utilize more sophisticated filtering. 

Furthermore, unlike in their study, we use a single feature 

extraction method for all problems.  

 

                                                
1
 http://www.media.mit.ed/vismod 

2
 http://www.cssip.elec.uq.edu.au/~guy/meastex/meastex.html 
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P# 
R. & H.  

[2] 

Basic 

LBP 

MP-

LBP 

(1,3) 

MP-

LBP 

(1,5) 

MP-

LBP 

(1,2,3) 

Our 

PCA 

Our 

Fisher 

P1 92.80 93.80 93.90 92.70 93.00 96.58 96.63 

P2 81.10 81.90 85.70 85.50 86.40 83.04 83.95 

P3 79.40 87.90 89.80 86.30 88.90 89.65 86.97 

P4 83.20 90.00 90.90 89.50 91.20 91.38 93.38 

P5 82.80 89.10 92.00 90.60 91.70 91.67 91.85 

P6 65.30 83.20 84.70 84.50 84.50 81.71 81.34 

P7 58.30 79.20 79.30 76.70 78.10 75.33 78.33 

P8 67.70 77.20 81.90 79.70 82.40 81.08 78.04 

P9 72.20 80.80 78.60 76.70 76.80 79.86 90.39 

P10 99.20 99.70 99.60 99.40 99.60 99.59 99.64 

P11 99.80 99.00 99.20 99.30 99.20 98.48 98.67 

P12 97.50 90.10 94.70 93.20 94.70 97.89 98.86 

Avg 81.62 87.66 89.14 87.84 88.88 88.85 89.84 

Table 1. Comparison between the classification performances. 

 

   

   

   

   

Figure 2. Problem (left), ground truth (center) and 

classification (right) for P1, P6, P8, P10. 

 

As previously mentioned, our method is compatible with 

multi-resolution and the use of this technique would make 

possible to increase robustness to resolution changes and 

alleviate issues due to poor choice of the fixed-size window. 

Feature vectors resulting from the use of Fisher 

coefficients are considerably bigger, however this approach 

has much lower complexity than PCA since it does not 

require any matrix multiplication to reduce the dimension of 

the feature vector. Despite the fact that PCA and Fisher are 

somewhat complementary, combining the two does not 

seem to bring any particular advantage.  

The use of polar coordinates makes our algorithm 

relatively robust to variations in the rotational angle of the 

texture. The polar mapping typically accounts for about 

4.5% of the performance, and it seems to provide a more 

precise characterization of textures exhibiting a quasi-

random pattern. Ongoing experimentation suggests that 

resilience to rotational variance and a more precise 

characterization of the textures allow for better performance 

on natural scenes as well.  
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