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ABSTRACT

We introduce a narrow band region approach in explicit de-
formable models for 2D and 3D image segmentation. Em-
bedding a region term into the evolution process, we derive a
general formulation which is applied both on a 2D parametric
contour and a 3D triangular mesh. Evolution of deformable
models is performed by means of energy minimization using
the computationally efficient greedy algorithm. The use of a
region energy related to the vicinity of the evolving surface
overcomes limitations of edge-based active models while re-
maining time effective. Experiments with segmentation qual-
ity assessment are carried out on medical images.

Index Terms— Segmentation, narrow band, region en-
ergy, active contour, active surface

1. INTRODUCTION

Since their introduction by Kass et al.[1], deformable mod-
els have met large success in the computer vision commu-
nity and found many applications in image segmentation and
tracking. They are powerful tools thanks to their geometrical
adaptiveness and ability to incorporate prior knowledge. Sev-
eral implementations of these active models were developed
in the past. Explicit deformable models represent the evolving
boundary as a set of interconnected control points or vertices.
Among these, the original 2D parametric contour and the 3D
triangular mesh [2] are straightforward implementations, in
which the boundary is deformed by direct modifications of
vertices coordinates. Conversely, implicit implementations,
based on the level set framework, handle the evolving bound-
ary as the zero level of a hypersurface, defined on the same
domain as the image. Level sets are often chosen for their nat-
ural handling of topological changes and intuitive extensibil-
ity to higher dimensions. In this paper, we deal with explicit
active contours and surfaces for 2D and 3D segmentation, re-
spectively.
Deformable models are basically attached to the image by

means of a local edge-based energies. However, the increas-
ing use of region energies has proven to overcome the lim-
itations of uniquely gradient-based models, especially when
dealing with data sets suffering from noise and lack of con-
trast. Indeed, many anatomical structures encountered in med-
ical imaging lend themselves to region-based segmentation.

Many works have dealt with the use of region-based terms in
the evolution of deformable models, whether they were im-
plemented as explicit contours [3] or level sets [4]. The re-
gion term is based on global image features and is therefore
computed over all pixels inside the contour. For parametric
snakes, this implies the use of filling algorithms [3] or pre-
computation of image integrals [5, 6]. Many work has been
done using level sets [4, 7] with known advantage of adaptive
topology at the expense of computational cost, especially in
3D [8]. Up to now, few region-based approaches have been
developed for 3D explicit segmentation as far as we know.
Moreover, explicit models have several advantages over their
implicit counterparts, including a more intuitive implementa-
tion, thus allowing easier modeling of prior knowledge.

We introduce a region-based term with a formulation that
can be both applied to explicit parametric 2D contours and 3D
meshes. The region energy is computed over a narrow band in
the vicinity of the evolving interface, which overcomes limi-
tations of edge-based active models while remaining time ef-
fective. Experiments include a comparison with the fast level
set method [9]. We first describe the theoretical framework
of our models. Then, we deal with numerical implementation
issues, including energy minimization by means of the greedy
algorithm [10]. Finally, experiments are made on 2D and 3D
MRI data sets, including segmentation quality assessment and
discussion about weight tuning.

2. NEW REGION-BASED DEFORMABLE MODELS

The continuous active contour model is a closed curve C :
Ω → R

2, s �→ (x(s), y(s)). Segmentation of an object of
interest is performed by finding the curve C minimizing the
following energy functional:

E(C) = ωcEc(C) + ωeEe(C) + ωrEr(C) (1)

where Ec, Ee and Er are respectively the curvature, edge and
region energies. Parameters ωc, ωe and ωr are the weights
defining the relative significance of the corresponding terms.
Since we do not wish to minimize curve length, we limit the
internal energy to the curvature term:

Ec(C) =
∫

Ω

∣∣∣∣∂
2C

∂s2

∣∣∣∣
2

ds (2)
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Omitting the first-order regularization term allows the con-
tour to undergo large variations of its area. However, once
discretized as a polygon, the contour needs to be periodically
reparameterized to keep control points evenly spaced. In this
context, resampling and remeshing techniques are discussed
in section 3. The two external terms Ee and Er are the edge
and region energies relating the model to the image data. Fit-
ting the contour to salient boundaries implies to use the gra-
dient norm of image function f .

Ee(C) = −
∫

Ω

|∇f(C(s))| ds (3)

Assuming that the curve is simple, i.e. non-intersecting, let
R be the region enclosed by C. Hence, C is a parameteri-
zation of ∂R. The region term usually depends on the image
function computed over R (the object) and its complement
RC (the background). On explicit implentations, all pixels
inside the region should be considered, by means of some re-
gion filling algorithm. To increase computational efficiency
and flexibility, we introduce a narrow band region energy. We
consider that the contour evolves in order to satisfy a region-
based term only in its vicinity, i.e. in an inner and outer band
on each side of the curve.

Fig. 1. Inner and outer bands for region energy

Let RI be the inner band domain and RO the outer band do-
main (see fig. 1), and B the band thickness, which is constant
as we move along C. The region energy is designed to max-
imize the mean intensity difference between the inner band
and the outer band:

Er(C) = −
∣∣∣∣ 1
AI

∫∫
RI

f(x)dx − 1
AO

∫∫
RO

f(x)dx
∣∣∣∣ (4)

where AI and AO are the band areas. Since the entire re-
gions R and RC are not considered in the energy functional,
they are not forced to verify an intensity homogeneity cri-
terion. Homogeneity is usually not desirable for the back-
gound in real images. For the object, we should point out that
the region energy is used to overcome issues raised by noise
and weak edges, rather than seeking for a real region-based
partition. To allow easy implementation, integrals of f over
regions need to be simplified to line integrals over the con-
tour. Let �n be the inward normal defined at every curve point.
Region RI is bounded by C and C + B�n, whereas RO is
bounded by C and C − B�n. We assume that C is regular
enough so that C + B�n and C − B�n are simple curves as
well. Let us write our main simplification:∫∫

RI

f(x)dx ≈
∫ B

0

∫
Ω

f(C+b�n)
∣∣∣∣d(C+b�n)

ds

∣∣∣∣ ds db (5)

and similarly forRO, replacing �n by−�n. Rigorously, the line
integral of f over C is:∫

Ω

f(C(s))
∣∣∣∣dCds

∣∣∣∣ ds (6)

where |dC/ds| is the arc length element. In parametric snakes,
it is usually considered constant for the edge energy (con-
versely, it is considered in geodesic active contours). Remov-
ing the arc length makes external energies dependent of the
parameterization but makes numerical energy minimization
easier.

This approach naturally extends to a three dimensonal seg-
mentation problem. In a continuous space, a deformable model
is represented by a parameterized surfaceS : Ω2 → R

3, (u, v)
�→ (x(u, v), y(u, v), z(u, v))T . Replacing C by S in eq. 1,
we obtain the surface energy to be minimized. The curvature
energy is based on the work in [11], from which we removed
the first-order surface derivatives (for the same reason as pre-
viously).

Ec(S)=
∫∫

Ω2

∣∣∣∣∂
2S

∂u2

∣∣∣∣
2

+
∣∣∣∣∂

2S
∂v2

∣∣∣∣
2

du dv (7)

To compensate the absence of first-order regularization term,
the surface will be periodically reparameterized. The edge
termEe(S)may be written as in eq. 3, considering now that f
is a R

3 → R function. In the 3D case, the narrow band region
energy is computed over the two bands volume integrals.

Er(S) = −
∣∣∣∣ 1
VI

∫∫∫
RI

f(x)dx − 1
VO

∫∫∫
RO

f(x)dx
∣∣∣∣ (8)

where VI and VO are the band volumes. For instance, should
S be a sphere, RI and RO may be viewed as two empty balls
with thickness B.∫∫∫

RI

f(x)dx

≈
∫ B

0

∫∫
Ω2
f(S + b�n)

∣∣∣∣d(S+b�n)
du

× d(S+b�n)
dv

∣∣∣∣ du dv db

(9)

and similarly for RO. In last equation, the term between |.| is
the area element. As it was done previously in the 2D case, it
will be considered as a constant for implementation.

3. IMPLEMENTATION

The contour and surface models are respectively implemented
with a polygon and a triangular mesh. Both are described us-
ing a common framework. They are made up of a set of n
vertices, denoted pi = (xi, yi)T in 2D and pi = (xi, yi, zi)T

in 3D. Each vertex pi has a set of neighboring vertices, de-
notedNi. In the 2D contour, index i is the discrete equivalent
of the curve parameter, hence Ni = {i − 1, i + 1} (i + 1
and i − 1 are modulo n). A vertex has an inward unit normal
vector �ni. Since the iterative evolution algorithm described
below modifies vertex coordinates, all normals should be up-
dated after each iteration (when all vertices have been trans-
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lated). To maintain vertices evenly spaced, adaptive resam-
pling (or remeshing in 3D) is performed. The contour and
surface are allowed to add or merge vertices to keep the dis-
tance between neighboring vertices homogeneous. It ensures
that every couple of neighbors (pi,pj) satisfies the constraint
a ≤ |pi − pj | ≤ 2a, where a is the chosen inter-vertex aver-
age distance. Resampling the 2D contour is straightforward,
since vertices can be easily inserted at a given position in the
vertex list. For the 3D mesh, adding or merging vertices mod-
ifies local topology, resulting in triangle merging or splitting
[2], as shown in fig. 2.

Fig. 2. Remeshing operations on the triangular mesh: ini-
tial mesh (left), vertex inserting (middle) and vertex deleting
(right)

To minimize the energy functional, the contour or surface is
iteratively deformed using the greedy algorithm [12], which
was proven to be more efficient than gradient descent [10].
In order the greedy approach to be applicable, the energy is
discretized and expressed as a sum of independent vertex en-
ergies.

Eglobal =
n∑

i=1

ωcEc(pi)+ωeEe(pi)+ωrEr(pi)+ωbEb(pi)

(10)
For a given vertex pi, the energy is computed for each p̃i in
a square or cubic window around pi. Let a be the window
width and d the image dimension, we have p̃i ∈ {pi + r|r ∈
([−a/2, a/2] ∩ Z)d}. Given this, the evolution equation is:

p(t+1)
i = arg min

p̃i

E(p̃(t)
i ) (11)

The internal energy is an approximation of local curvature.
While its discretization is simple in 2D, it is not obvious how
to implement the surface derivatives of eq. 7 in a triangular
mesh. For a discrete planar contour, curvature is equivalent to
the squared distance between the vertex and the middle of its
two neighbors. Extending this principle to the mesh, the cur-
vature of the tested point p′i is the squared distance between
p′i and the centroid of the neighbors of vertex pi.

Ec(p̃i) =

∣∣∣∣∣∣p̃i − 1
|Ni|

∑
j∈Ni

pj

∣∣∣∣∣∣
2

(12)

The edge termEe(p̃i) = − |∇f(p̃i)| is extracted using Sobel
and Zucker-Hummel operators for 2D and 3D images, respec-
tively. Gaussian filtering may be applied for noise reduction
prior to edge detection. The region energy is a discretization
of eq. 4 or 8 depending on the dimension.

Er(p̃) = −
∣∣∣∣∣
B−1∑
b=0

f(p̃i + b�ni) −
B∑

b=1

f(p̃i − b�ni)

∣∣∣∣∣ (13)

For a given vertex, the same number of voxels is considered
in both bands, which allows to avoid normalization by respec-
tive areas. It should be noticed that the region term does not
use region filling algorithm based polygon scan-conversion,
like in [3], thus ensuring lower computational cost. To in-
crease the capture range and to reduce the internal energy
shrinking effect, we add a balloon energy Eb derived from
the inflation force proposed in [11], which makes the model
propagate along its normal direction.

Eb(p̃i) = |p̃i − (pi + a�ni)|2 (14)

The sign of weight ωb appearing in eq. 10 controls the motion
orientation, whether the balloon is used to inflate or deflate the
surface.

4. RESULTS

Segmentation experiments were conducted on real medical
data on a P4 2.8GHz with 512Mb RAM. Expert segmenta-
tion was available, so that segmentation quality can be as-
sessed. The modified Hausdorff distance Hmean introduced
in [13] measures the average fitting of the surface to the real
boundary, whereas the original Haussdorf distanceHmax cor-
responds to the greatest error between the two boundaries.
Both are expressed in pixel/voxel units.

We compared our method to the Chan & Vese model [4] im-
plemented using the fast evolution algorithm described in [9].
We consider the level set function φ : R

d → R, where d is the
image dimension. The contour or surface is the zero level set
of φ. We define the region enclosed by the contour or surface
by R = {x|φ(x) ≥ 0}. Function φ deforms according to the
evolution equation:

∂φ

∂t
= F (x) |∇φ(x)| ∀x ∈ R

d (15)

with speed function F defined as follows:
F (x) = Fe(x) + Fr(x) − κ(x)
Fe(x) = − |∇f(x)|
Fr(x) = − |μI − f(x)| + |μO − f(x)|
κ(x) = div(∇φ/ |∇φ|)

(16)

where κ is the curvature of φ. μI and μO are the mean inten-
sities inside and outside the contour. Fe and Fr are the edge
and region terms.

Typically, classical edge-based deformable models fail on
medical data, where noise and low contrast prevent the ex-
traction of reliable boundaries. Fig. 3 depicts segmentation
of the left ventricle, in a 256 × 256 MRI slice in short-axis
view. The main application here is the measurement of blood
volumes to estimate the ejection fraction, a critical value in
cardiac disease diagnosis. Finding the endocardium boundary
is made more complex by the presence of papillary muscles,
appearing as small dark areas inside the blood pool. For this
particular data, topological changes were handled. The need
for a topological modification was detected by verifying inter-
section between at least two contour edges. We used region
filling and edge linking algorithms to compute the new set of
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Fig. 3. Segmentation of the left ventricle endocardium: topo-
logical changes generate small inner boundaries (green) in-
side the main boundary (red)

contours. When the active contour wrapped around a papil-
lary muscle, an independent deformable contour was created.
Our approach proved to be robust with respect to initial loca-
tion as long as the major part was inside the blood pool. Ob-
tained distance values wereHmean = 0.54 andHmax = 2.32
with our method and Hmean = 0.68 and Hmax = 2.78 for
the level set method. We found our method to be slightly
slower than the level set (about 3s), mainly due to topologi-
cal handling. Figure 4 shows a reconstructed surface of the
aorta, in a 3D 512 × 512 × 810 CT data set of the abdomen.
A fixed-topology 3D mesh was initialized as a sphere totally
inside the blood vessel and inflated afterwards. Measure-
ment of the final surface with respect to ground truth gave
(Hmean = 1.07, Hmax = 13.37) for our method, whereas
we obtained (Hmean > 20, Hmax > 20) with the implicit
surface method. Indeed, level sets have difficulties to gen-
erate boundaries as smooth as explicit surfaces do, which is
maily due to their implicit curvature. Even with stronger cu-
vature weight, the implicit surface was subject to boundary
leakages. We found that band thickness B was not critical
above 5 voxels on final quality, but was the major influence
on computational cost. Full segmentation process took 84s
with B = 10 and 62s with B = 5, whereas the fast level set
took more than 300s to reach the same segmentation level.

5. CONCLUSION

We proposed a new narrow band region term for explicit de-
formable models driven by energy minimization. Our ap-
proach is based on a general formulation allowing implemen-
tation on discrete 2D active contours and 3D triangular meshes.
The narrow band region energy managed to overcome the
drawbacks of gradient-based models with very promising re-
sults, in terms of computational cost and segmentation qual-
ity. Future work may focus on handling topological modifi-
cations on the mesh, like in [2]. We also plan to extend the
model for region tracking on 3D temporal data, and investi-
gate further on the criteria for comparisons between explicit
approaches and level set methods.
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