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ABSTRACT

In this paper we investigate the problem of automatically detecting
2D grid structures such as windows on building facades from images
taken in urban settings. The key assumption that the background
is strongly structured allows searching for near-regular textures in
the image. We describe a probabilistic framework using Markov
Random Field modeling and Markov Chain Monte Carlo (MCMC)
optimization to explicitly recognize and group rectangular structures
that appear in a grid-like pattern. Results on a variety of images of
building facades are shown.

Index Terms— Image analysis, Segmentation, Pattern Recog-
nition

1. INTRODUCTION

The motivation of this work is to parse images of man-made environ-
ments. It is part of a larger goal of robot-based urban modeling by
incorporating semantic information into structure recovery and tex-
ture map construction. Purely geometric methods such as structure
from motion rely on low-level features like points or lines. However,
by restricting our application domain to structured environments like
cities and campuses, we can exploit other high-level cues for mod-
eling. One particular feature of urban scenes that we wish to detect
are 2D lattices such as grids of windows or bricks.

Several researchers have attempted to use characteristics of man-
made scenes for tasks such as camera calibration[1] and structure
from motion [2]. Grammar-based interpretation of building facades
in a Markov Chain Monte Carlo (MCMC) framework has been de-
scribed by Alegre and Dellaert [3]. Mayer and Reznik [4] also use
MCMC sampling for locating windows. However, both methods use
highly specialized models and show examples on a very restricted
set of images. We propose a more general grouping algorithm that is
able to locate grid structures in a variety of building images. We also
demonstrate how this discovered lattice can be used to infer occluded
windows.

We frame the window extraction problem as one of texture dis-
covery. Several papers have examined the problem of finding reg-
ular, planar patterns, with notable approaches based on RANSAC
[5] and the cascaded Hough transform [6]. An algorithm for near-
regular texture (NRT) discovery by lattice growth was described in
[7]. Their method, which iteratively grows a lattice from a seed lo-
cation, worked well on many images we tested but did not find the
entire textured region when blocked by significant occlusions. Be-
sides being computationally expensive (averaging over half an hour
per image on an Intel Core2 Extreme X6800), their method finds
tiles which do not correspond exactly to semantically meaningful
units. Our approach benefits from several strong assumptions about
the kind of texture we are looking for because of the urban scene
domain.

In this paper, we describe an algorithm for grouping rectan-
gular structures that appear on building facades. We first describe
the bottom-up discriminative process that involves generating sev-
eral hundred rectangle hypotheses from an image. Then a top-down
grouping algorithm combines appearance, shape and topology cues
in a Markov Chain Monte Carlo framework to group rectangles that
form part of a 2D lattice on the facade. We show results on various
images and demonstrate how this lattice discovery could be used for
modeling applications.

2. RECTANGLE HYPOTHESES

The first stage of our algorithm consists of finding as many straight
lines as possible. Canny edge detection is applied to locate high gra-
dient pixels in the image. Similar to the technique of Zhang and
Kosecka [1], the orientation of each edge pixel is quantized into 8
bins. However, instead of computing the gradient direction from the
Sobel operator, we convolve the image with filters from the RFS fil-
terbank [8] at 8 orientations and a single scale. Each pixel is assigned
to the bin of the filter that had the maximal response. This technique
was found to be more robust to noise, especially in the presence of
occlusions or weak edges. Adjacent edge pixels in the same orienta-
tion bin are grouped together using connected components to obtain
a number of straight lines from the image. For efficiency, we re-
tain only lines that had more than 15 pixels (approximately 2% of
image dimensions) grouped together. Each connected component is
parameterized as a line by its centroid, slope and magnitude. This is
computed using least squares fitting.

We assume that our image has been rectified or the scene is
mostly fronto-parallel where perspective effects are negligible. This
allows us to represent rectangular structures with just 4 parameters
– upper-left corner pk, width wk and height hk for rectangle k. A
discriminative bottom-up approach for rectangle finding has been
mentioned in [1]. In that work, rectangles under perspective are hy-
pothesized from two pairs of lines, each of which is picked from
two different vanishing directions. The validity of the hypotheses is
verified by looking for corner features in the image. Our rectangle
detection is a top-down approach similar to [9], and can therefore
afford to be more conservative about which rectangles pass through
to the next stage for grouping.

To generate possible rectangles in the image, pairs of line seg-
ments (li, lj) are exhaustively drawn and tested for parallelism. Due
to our assumptions, these lines are also restricted to be within 10
degrees of the horizontal and vertical directions. For liand lj to be
parallel, they must satisfy the following conditions:

• Magnitude difference should be within 10% of the minimum
length of the two.

• At least 90% of overlap between the lines in its orthogonal
direction.
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Fig. 1. Extracting 2D window grids (a) Original rectified image;
(b) straight lines fitted to canny edges; (c) Generating rectangle hy-
potheses from pairs of parallel line segments;(d) discovered lattice
with inferred neighborhood relationships using our MCMC method.
Image (a) was automatically rectified.

• The resulting rectangle should have an aspect ratio a = width
height

in the range 0.3 ≤ a ≤ 2. This is typical of windows found
on most buildings.

Every pair of lines that satisfy these constraints is used to propose
a rectangle. Compared to [1] and [9] which needs all 4 lines, the
sufficiency of line pairs makes it less sensitive to broken edges in the
edge detection. Moreover, the strength of the higher-level grouping
stage ought to overcome any ambiguities caused by having too many
rectangles. Figures 1(b) and 1(c) show fitted straight lines and hy-
pothesized rectangles for an input image. These rectangles are then
passed to our lattice discovery algorithm described below.

3. DISCOVERING BUILDING TEXTURE
3.1. MRF Grid Extraction

We define a lattice-based Markov Random Field (MRF) [10] to model
the grid topology. Similar models have been used for microarray
analysis [11] and tracking deformable NRT lattices [12]. The rectan-
gles generated by the technique described above constitute the nodes
of the MRF graph. Other image discretization methods such as inter-
est points and correlation map peaks [7], or superpixels of an over-
segmented image [13] are also possible.

Similar to the texel proposal method of [7], an initial undirected
grid graph G0 = (V, E) is constructed by a greedy scheme whereby
each region connects with its lowest cost neighbor. The cost Ec(vi, vj)
for each pair of nodes vi, vj is measured as the total number of other
nodes within a threshold distance of the line parameterized by the
two nodes, scaled by rough shape similarity

B(vi, vj) = e−α(|wi−wj |+|hi−hj |)

. G0 is then refined based on topology, shape and appearance follow-
ing similar approaches to graph representation of adjacent regions in
an over-segmented image [13, 14]. In our case, the nodes that are
part of the lattice can be distributed over the entire image, and ev-
ery pair of assignments between two nodes should be consistent in

that they can be derived from a higher-order topological constraint
T such as a 2-D rectangular grid. Thus grouping involves creating
links along vectors to

i : o ∈ {r, l, u, d} to the most likely right,
left, up and down neighbors of vi without violating grid constraints.
Given image I , we wish to obtain the MAP estimate

p(G|I, T, S) ∝ p(I|T, S, G)p(T |G)p(S|G)p(G). (1)

All the results in the paper have been produced with the image
likelihood p(I|T, S, G) set to unity. Color histograms, proximity of
rectangle boundaries to image edges, or learned appearance models
are all possible likelihood models. The shape prior p(S|G) can be
used to favor known shape models, though here we set it to unity
since we are only dealing with rectangles. The graph prior p(G)
is set to be linear in the number of connected edges and unity if at
least 50% of the nodes are connected. The topology prior P (T |G)
is represented as a pairwise MRF whose joint can be factored into a
product of local node potentials Φ and clique potentials Ψ:

P (T |G) ∝
Y

i

Φ(vi)
Y

i,j∈E

Ψ(vi, vj).

To model a grid, we measure the symmetry of direction vectors from
a node to its neighbors. Let δ(t1, t2) = e−β||t1−t2|| be a similarity
measure between two neighbor vectors assuming both edges are in
G. The potentials are now defined as:

Φ(vi) = e−γ(4−ni) ∗ δ(tr
i ,−tl

i) ∗ δ(tu
i ,−td

i ),

Ψ(vi, vj) = δ(tu
i , tu

j ) ∗ δ(td
i , td

j ) ∗ B(vi, vj).

where ni denotes the degree of node vi. Thus we encourage left/right
and up/down edge pairs to be 180 degrees apart with similar magni-
tudes. The interaction potential between horizontal neighbors forces
their vertical edges to be approximately parallel. For missing edges,
a small fixed value is assigned to δ. Even with these simple poten-
tials, we are able to model many rigid and non-rigid grid configura-
tions from the CMU NRT database [15].

3.1.1. Optimization

We use a Markov Chain Monte Carlo (MCMC) framework to iter-
atively maximize (1), probabilistically adding and removing edges
from G0 in a fashion similar to the multi-target tracking method of
[16]. A Markov chain is defined over the space of configurations
{G} and the posterior is sampled using the Metropolis-Hastings [17]
algorithm. A new state G′t is accepted from state Gt with probability

p = min(1,
p(G′

t|I,T,S)q(Gt|G′
t)

p(Gt|I,T,S)q(G′
t|Gt)

).

Proposal updates q(G′t|Gt) consist of edge additions or removals
applied to a uniformly selected node vk. Modifying one component
at a time leads to a better success rate for transitions, although large
state changes require more jumps. The edge transitions are made
only in the up and right directions in order to keep the reverse tran-
sition probability simple. Let ekl : l ∈ {1, . . . , nk} be the edges
from vk to its neighbors. The edge in each direction is turned off
with fixed probability poff or assigned a neighbor by sampling from
Ec(k, ·). The simulation is run for 10000 iterations and the maxi-
mum a posteriori state estimate is returned.

4. LATTICE COMPLETION AND INFERENCE

The best state configuration returned by the MCMC simulation con-
sists of separate connected components, each of which form a 2D
grid configuration. On all the images in this paper, the window grid
could be identified as the largest such component. On more complex
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Fig. 2. The dominant 2D grid after grouping rectangles together.
Since the grid is modeled locally using only pairwise relationships,
it might deviate slightly from a single global model. This can be
corrected in a post-processing stage.

images, alternative image-based metrics can be used to extract the
most likely window grid.

Our method also facilitates inferring parameters of the regular
grid from the grouped elements. The rectangle’s median height and
width as well as magnitudes of the horizontal and vertical t vectors
are computed first. We then pick the node with the highest likelihood
according to (1) as an origin. This completely specifies a regular grid
that can be overlaid on the image to hypothesize missing or occluded
lattice elements.

This approach is not as accurate if the actual windows deviate
from the perfect grid assumption. For instance, windows on the
ground floor have slightly different dimensions. However, we ob-
served that windows on the same floor are similar and are centered
horizontally and vertically with its neighbors. As explained in the
previous paragraph, the parameters describing a regular grid (and
which best approximates the discovered lattice) are first computed.
Then for every window location, we test whether an actual window
was detected in the grouping stage or not. If so, that window is
drawn according to its parameters. Otherwise, a missing grid ele-
ment is inferred at the location aligned horizontally and vertically
with its neighbors. The size is set to be the same as that of its hori-
zontal neighbor.

5. RESULTS

Our algorithm was tested on a variety of images consisting of highly
regular and near-regular window lattice textures. Figure 1 shows re-
sults from each stage; bottom-up line fitting, rectangle hypotheses
generation and finally the grouping algorithm described in section
3. The yellow lines in figure 1(d) denote the neighborhood relation-
ships inferred between the grid elements. Zooming into the image
reveals that rectangles have been localized accurately around all vis-
ible windows forming the grid lattice.

Figure 2 shows another example of a discovered grid. There
were 571 lines fitted to the Canny edges from which 271 rectangles
were proposed. 53 elements were discovered as part of the grid. As
can be seen, the grouping algorithm does not require images to be
rectified. Since we don’t use the image likelihood function, it is hard
to distinguish between an actual window and a spurious one as long
as they are topologically consistent with the rest of the grid.

Figure 3 show more examples where the discovered grid (drawn
in blue) is used to identify missing or occluded grid elements (drawn

in red). The images in the top row are highly regular and can be fully
described by a single set of global parameters. Predicting the loca-
tion of occluded windows in figures 3 (c) and (d) however required
the more adaptive approach detailed in section 4.

Figure 4 illustrates how this kind of semantic knowledge can
be used to obtain clean texture maps for modeling. We can collect
per-pixel statistics about the appearance of windows to detect and
remove outlier elements. The reflected dome in fig. 3(b) has been
scrubbed clean.

6. CONCLUSION

We have demonstrated a promising approach for accurate discovery
and localization of 2D lattice structures from a single static image.
Motivation for this work is to exploit higher-level domain cues found
in man-made environments for a robot-based architectural modeling
project. An MRF model for 2D lattices is defined where each node
is a rectangle proposed by a bottom-up method. These rectangles
are grouped together by topological constraints using an MCMC op-
timization framework.

Much work still remains to be done. We are currently exper-
imenting with various image likelihood functions. Occlusions and
errors in the edge detection might cause missing nodes in the lattice
or generate a rectangle in a uniform part of the image. A drawback
of the MRF model with local pairwise relationships is that there are
no global constraints that force all nodes to adhere to a grid structure.
Nevertheless, we demonstrate how topological constraints alone can
assist in scene understanding.
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