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ABSTRACT

Super-resolution (SR) is a technique that generates a high-

resolution (HR) image from a set of low-resolution (LR) ones.

Previous preconditioning methods for SR did not consider

the case of rational magnification factors. In this paper, a

method for preconditioning SR problems involving such fac-

tors is presented. We show that by reordering the pixels of the

observed LR images, the structure of the linear problem to

solve is modified in such a way that preconditioners based on

circulant operators can be used. Simulations with magnifica-

tion factors of practical interest demonstrate the effectiveness

of our approach.

Index Terms— Super-resolution, preconditioning, image

restoration, linear systems

1. INTRODUCTION

HR images are desired and often required in several appli-

cations. Since increasing resolution by employing a better

camera can be costly and sometimes infeasible, SR [1][2] can

constitute a good alternative. This technique synthesizes a

HR image from a set of degraded and aliased LR ones by ex-

ploiting knowledge of the relative subpixel displacements of

each LR image with respect to a reference frame.

Many SR algorithms boil down to solving a large struc-

tured and sparse system of linear equations. Iterative solution

methods such as conjugate gradients (CG) [3] are often em-

ployed and can benefit from performance improvements due

to preconditioning, which transforms a system into another

having the same solution, but that can be solved either more

accurately or faster [4]. Recently, Nguyen et al [5] showed

how to accelerate least-square SR algorithms by reordering

the pixels of the HR image in the formulation of the prob-

lem. Assuming that the magnification factor is an integer,

the new coefficient matrix associated with the proposed re-

ordering can be well approximated by a block matrix whose

blocks are circulant matrices. Since a circulant matrix is uni-

tarily similar to a diagonal matrix through the Fast Fourier

Transform (FFT) [4], efficient preconditioners can be devel-

This work was generously supported by a Precarn scholarship.

oped using such approximations. Later, Bose et al [6] pre-

sented a related technique where the approximating matrix is

a block matrix whose blocks are block-circulant matrices with

circulant blocks (BCCB) instead of simple circulant matrices.

In their work, the authors implicitly assume that the magnifi-

cation factor is an integer.

In this paper, we show how to apply preconditioners based

on circulant matrices to SR problems involving a rational mag-

nification factor in order to accelerate the solution process.

More precisely, we describe a technique for reorganizing the

coefficient matrix given the parameters of the SR problem to

solve. This is motivated by recent work of Lin and Shum [7]

suggesting that, under certain circumstances, optimal magni-

fication factors for SR are non-integers.

2. MATHEMATICAL MODEL

The problem consists of recovering an Nx-by-Ny HR image

X from a set of k registered Mx-by-My LR images Yi, where

i = 0 . . . k−1. Suppose that q represents the desired magnifi-

cation factor in both the horizontal and vertical directions; we

then have Nx = qMx and Ny = qMy . Note that q does not

need to be an integer; one could have Nx = 150, Mx = 100
and q = 1.5 for instance. It is assumed that the LR images

were generated by shifting and blurring the HR image, then

decimating the result. The blur is assumed to be linear shift-

invariant (LSI). Let x be a vector of length NxNy whose ele-

ments are the pixel values ofX in a given lexicographic order.

Similarly, yi is a vector of length MxMy representing the LR

image Yi. The imaging process yielding an observed image

yi can thus be expressed in matrix form as

yi = DiBiSix + ni, (1)

where Di is an MxMy-by-NxNy decimation matrix, Bi is an

NxNy-by-NxNy blurring matrix, Si is an NxNy-by-NxNy

shift matrix and ni is an additive noise vector of length MxMy .

By stacking these equations on top of one another and using

Hi = DiBiSi to simplify notation, one gets:⎡
⎢⎣

y0

...

yk−1

⎤
⎥⎦ =

⎡
⎢⎣

H0

...

Hk−1

⎤
⎥⎦x +

⎡
⎢⎣

n0

...

nk−1

⎤
⎥⎦
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y = Hx + n. (2)

The system (2) is generally ill-conditioned and cannot be solved

directly. By using linear least-squares regression with regu-

larization, we minimize the following cost function instead:

min
x

{
‖y −Hx‖22 + λ‖Rx‖22

}
, (3)

where R is a regularization operator such as the first-order

finite-difference operator. The minimization of expression (3)

above amounts to solving this system:

(
HT H + λRT R

)
x = HT y. (4)

3. PRECONDITIONING APPROACH

We follow the preconditioning approach of Nguyen et al by

first finding approximations H̃ and R̃ to H and R respec-

tively. An approximation of the coefficient matrix of equation

(4) can then be formed as follows:

H̃T H̃ + λR̃T R̃. (5)

To simplify the explanation that will follow, we give a few

definitions. Let Fq,[i, j](X ) be a discrete linear operator that

downsamples an image X by a factor of q along both axes,

starting with pixel (i,j). For example, applying F2,[1, 0] to a

4-by-4 image X would give

X ′
=

[ X(1,0) X(3,0)

X(1,2) X(3,2)

]
,

where X(i,j) refers to pixel (i, j) of X . The equivalent matrix

operator is denoted by F(Lx,Ly)

q,[i, j] , which is compatible with a

vector representing an Lx-by-Ly image. Finally, let F(Lx,Ly)
q

be the square matrix obtained by stacking on top of one an-

other the downsampling matrices F(Lx,Ly)

q,[i, j] associated with all

possible combinations of horizontal and vertical integer shifts

smaller than q. Note that F(Lx,Ly)
q is a permutation matrix,

since F(Lx,Ly)
q x has the effect of reordering the elements of

x without modifying them.

3.1. Integer magnification factor q

Nguyen et al’s technique reorders the columns of H and the

pixels of x in a way that simulates several downsampling

operations. Using the previous definitions, their reordering

scheme can be defined by the permutation matrix P as

P = F(Nx, Ny)
q (6)

and the desired reordering is HPT . The reordered matrix is a

k-by-q2 block matrix with blocks of size MxMy-by-MxMy .

Consequently, the approximation (5) of the normal equations

will be a q2-by-q2 block matrix with blocks of size MxMy-

by-MxMy .

To illustrate their method, we consider the simple case

where Nx = Ny = 4, Mx = My = 2 and q = 2. Assuming

for simplicity that both B0 and S0 are the identity matrix, the

transformation matrix H0 associated with Y0 is:

H0 =
1
4

⎡
⎢⎢⎣

1100 1100 0000 0000
0011 0011 0000 0000
0000 0000 1100 1100
0000 0000 0011 0011

⎤
⎥⎥⎦ . (7)

The permutation matrix is

P = F(4,4)
2 =

⎡
⎢⎢⎢⎢⎣

F(4,4)
2,[0, 0]

F(4,4)
2,[1, 0]

F(4,4)
2,[0, 1]

F(4,4)
2,[1, 1]

⎤
⎥⎥⎥⎥⎦ , (8)

and the reordered matrix is

H0PT =
1
4

⎡
⎢⎢⎣

1000 1000 1000 1000
0100 0100 0100 0100
0010 0010 0010 0010
0001 0001 0001 0001

⎤
⎥⎥⎦ . (9)

3.2. Rational magnification factor q = a
b

When q is not an integer, one cannot create a permutation ma-

trix P using the previous method such that HPT has a struc-

ture suitable for preconditioning. However, if q is a rational

number such that q = a
b , where a and b are integers, and both

Mx and My are chosen to be multiples of b, then one can find

two permutation matrices P and Q such that QHPT has the

desired structure; these permutation matrices are defined as

Q = F(Mx, My)
b and P = F(Nx, Ny)

a . (10)

The effect of matrix Q can be seen as reordering the rows

of H and the pixels of the LR images correspondingly. The

reordered matrix is a kb2-by-a2 block matrix with blocks of

size
MxMy

b2 -by-
MxMy

b2 . Consequently, the approximation (5)

of the normal equations will be an a2-by-a2 block matrix with

blocks of size
MxMy

b2 -by-
MxMy

b2 .

To illustrate our reordering method, we consider the case

where Nx = 6, Ny = 3, Mx = 4, My = 2 and q = 3
2 = 1.5.

Using the same simplifying assumptions as before about B0

and S0, we have that

H0 =
1
9

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

420000 210000 000000
024000 012000 000000
000420 000210 000000
000024 000012 000000
000000 210000 420000
000000 012000 024000
000000 000210 000420
000000 000012 000024

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)
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The permutation matrices are

Q =

⎡
⎢⎢⎢⎢⎣

F(4, 2)
2,[0, 0]

F(4, 2)
2,[1, 0]

F(4, 2)
2,[0, 1]

F(4, 2)
2,[1, 1]

⎤
⎥⎥⎥⎥⎦ and P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F(6, 3)
3,[0, 0]

F(6, 3)
3,[1, 0]

F(6, 3)
3,[2, 0]

F(6, 3)
3,[0, 1]

F(6, 3)
3,[1, 1]

F(6, 3)
3,[2, 1]

F(6, 3)
3,[0, 2]

F(6, 3)
3,[1, 2]

F(6, 3)
3,[2, 2]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

and the reordered matrix is

QH0PT =
1
9

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

40 20 00 20 10 00 00 00 00
04 02 00 02 01 00 00 00 00
00 20 40 00 10 20 00 00 00
00 02 04 00 01 02 00 00 00
00 00 00 20 10 00 40 20 00
00 00 00 02 01 00 04 02 00
00 00 00 00 10 20 00 20 40
00 00 00 00 01 02 00 02 04

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

We obtain a block matrix where similar values in each block

are aligned diagonally, which allows the utilization of pre-

conditioners based on block matrices with circulant blocks.

These circulant blocks are derived from preconditioners ex-

ploiting properties of circulant matrices such as Strang’s pre-

conditioner [8] or Hanke-Nagy’s inverse preconditioner [9];

see Nguyen et al’s work [5] for more details.

3.3. Computational complexity

The two tasks that are the more computationally intensive are

the block-diagonalization of the approximation of the coeffi-

cient matrix and its inversion. Using the FFT, the block ap-

proximation of the normal equations is transformed into an

a2-by-a2 block matrix with diagonal block matrices of size
MxMy

b2 -by-
MxMy

b2 . This step takes O
(
a4 MxMy

b2 log(MxMy

b2 )
)

.

Due to its special structure, the inversion of this matrix can be

performed by solving
MxMy

b2 independent systems of linear

equations, each of size a2. The complexity of this task is thus

O
(
a6 MxMy

b2

)
. It is interesting to note that when a becomes

large, the problem becomes more computationally intensive

to solve, even if the actual magnification factor is low. For

this reason, one must be careful when choosing the rational

magnification factor.

4. RESULTS

If the noise removal and registration steps are not sufficiently

reliable, a magnification factor of 1.6 is the practical limit of

(a) (b)

(c) (d)

(e)

Fig. 1. SR with a magnification factor of 2.5: (a) the original

image; (b) one of the 9 LR images (scaled); (c) the restored

image after one CG iteration; (d) the restored image after one

PCG iteration; (e) Relative SSE as a function of the number

of iterations.

SR [7], and a magnification factor of 2.5 is suggested when

a larger value is desired. We present simulation results for

these two cases of practical interest in Figures (1) and (2).

For this purpose, we generated a set of LR images by shift-

ing, blurring and downsampling an ideal 240-by-240 HR im-

age according to the imaging model described in Section 2.

In the first experiment, we downsampled the HR image by a

factor of q = 5
2 = 2.5 to produce a set of nine LR images.

In the second experiment, we produced a set of four noisy

LR images by downsampling the ideal HR image by a fac-

tor of q = 8
5 = 1.6 and adding Gaussian noise to the result.

The CG and preconditioned conjugate gradient (PCG) meth-

ods were then used to reconstruct the HR image from the LR

ones. Strang’s preconditioner was used in the PCG case. The
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(a) (b)

(c) (d)

(e)

Fig. 2. SR with a magnification factor of 1.6: (a) the original

image; (b) one of the 4 LR images (scaled); (c) the restored

image after one CG iteration; (d) the restored image after one

PCG iteration; (e) Relative SSE as a function of the number

of iterations.

Laplacian was employed as a regularization term in both ex-

periments and the value of λ was set to 0.001 and 0.005 in

the first and second experiments respectively. The results of

these experiments, shown in Figures 1 and 2, allow a com-

parison of the restored image after one iteration of either CG

(c) or PCG (d), as well as the relative Sum-of-Squared Errors

(SSE) between the ideal HR image (a) and the reconstructed

HR image as a function of the number of iterations (e). One

can see that the PCG method produces a better solution for

the same amount of iterations. The actual computation time

depends on the hardware used, the image size and the rational

magnification factor, as discussed in section 3.3.

5. CONCLUSIONS

In this paper, we presented a technique for preconditioning

SR problems involving a rational magnification factor. An

interesting application of this work is the preconditioning of

problems that employ the non-integer magnification factors

advocated by Lin and Shum [7]. We also note that the pro-

posed approach could easily be adapted to temporal super-

resolution preconditioning [10] when a non-integer frame-

rate improvement factor is desired.
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