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ABSTRACT

In the Shape from Focus (SFF) method, a sequence of images

of a 3D object is captured for computing its depth profile.

However, it is useful in several applications to also derive a

high resolution focused image of the 3D object. Given the

space-variantly blurred frames and the depth map, we propose

a method to optimally estimate a high resolution image of the

object within the SFF framework.

Index Terms— Shape from focus, super-resolution, im-

age enhancement, image sequence analysis, Cramer-Rao lower

bound.

1. INTRODUCTION

Shape from focus is a method for estimating the structure of

a 3D object. A sequence of images of the object is captured

through a real aperture camera. Due to the finite depth of field,

none of these observations will be in focus. The images suf-

fer from aliasing, space-variant blurring and noise. Increasing

the resolution of images in SFF is potentially useful in appli-

cations where one is interested in finer details on the surface

of a 3D specimen. In the literature on SFF, thus far there has

been no attempt to reconstruct a high resolution (HR) focused

image of the 3D object. The resolution of the frames cap-

tured in SFF is limited by the resolution of the real aperture

camera used. Super-resolution algorithms estimate an HR im-

age from multiple low resolution (LR) frames by dealiasing

and deblurring. Broadly, these algorithms can be classified

into three categories; namely, motion-based, motion-free and

learning-based. Motion-based algorithms [1, 2] exploit the

relative motion between the camera and the scene which gives

rise to sub-pixel displacements among the LR images, to ob-

tain an HR image. Motion-free super-resolution [3] can be

performed when there is no relative motion between the LR

frames, by using the defocus cue. The classic paper of Pa-

poulis [4], provides the theoretical foundation for motion-free

super-resolution. Learning based algorithms [5, 6, 7] attempt

to learn the statistical relationships between corresponding

image regions in LR and HR images during the training phase

and use these relationships to predict finer details for enlarg-

ing other LR images.

In SFF, space-variantly blurred observations are naturally

captured as the 3D object is translated vertically. Since we

know that blur can serve as a cue for super-resolution [3],

our goal in this work is to exploit the defocus cue to extend

the scope of traditional SFF to reconstruct a HR image of the

underlying 3D object, given its LR depth map and the LR

observations.

2. PROBLEM FORMULATION

In traditional SFF [8], a 3D object is placed on a transla-

tional stage which moves in a vertical direction in steps of Δd.

A sequence of images is captured which are space-variantly

blurred due to the 3D nature of the specimen and the finite

aperture of the camera. The focus measure F (x, y) at a point

(x, y) in image I is computed using the sum-modified Lapla-

cian (SML) operator [8]. The focus measure profile for the

pixel at (x, y) is obtained by plotting the value of F (x, y)
computed for every image captured in the stack of observa-

tions. The final estimate of the depth at (x, y) is arrived at

by using Gaussian interpolation of a few values near the peak

value of the focus measure profile.

In this paper, we address the following problem: Given

the depth map of the 3D object and the observations captured

in a SFF scenario, can we super-resolve the focused image of

the 3D object? In order to perform super-resolution, we need

a model that relates the LR observations to the HR image.

We assume p number of LR observations {ym(i, j)}, each of

size M x M which are decimated, blurred noisy versions of

a single HR image {x(m,n)} of size qM x qM . If ym is the

lexicographically arranged vector containing pixels from the

mth LR image of size M2 x 1 and x is the lexicographically

arranged vector containing pixels from the HR image of size

q2M2 x 1 then they can be related in the following way [9]

ym = HmDx + nm, m = 1, ..., p (1)

where Hm is the blur matrix of size M2 x M2, D is the deci-

mation matrix of size M2 x q2M2 and nm is zero mean noise

vector of size M2 x 1. The observation noise is assumed

to be zero mean Gaussian with variance σ2
η. In motion-free

super-resolution, the degradation model that is typically used
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is ym = DHmx+nm. However, in SFF the choice of degra-

dation model given by eq. (1) is motivated by the fact that we

have depth estimates at the same resolution as the LR obser-

vations.

To compute the blur matrix Hm, we need to model the

point spread function (PSF) of the real aperture camera. In

the literature, the PSF is usually modeled by a 2D Gaussian

function [10] h(i, j) = 1
2πσ2 exp −(i2+j2)

2σ2 where σ is the blur

parameter. Note that a 3D object induces space-variant blur-

ring. The spatial distribution of the blur in relation to the

depth at a point on the object can be given as

σ = ρRv

(
1

wd
− 1

D

)
(2)

where wd is the working distance of the camera, D is the dis-

tance of the object point from the lens, v is the distance from

the lens to the image plane, R is the radius of the aperture of

the lens and ρ is a camera constant.

Interestingly, it is possible to show that the relationship

between the blur parameter at a particular point in one im-

age in the stack and another image at the same point can be

expressed as

σk = σ0 + ρRv

(
1

D0
− 1

D0 ± kΔd

)
(3)

where σk is the blur parameter at a particular point in the kth

frame, σ0 is the blur parameter at the same point in the refer-

ence frame, Δd is the step size by which the stage is moved

and D0 is the distance of the object point from the lens when

the stage was at the reference position. An appropriate cal-

ibration procedure must be adopted to find the value of the

product ρRv. Unlike in depth from defocus [3], only the

stage is translated here and there is no need to change the lens

settings. Hence, in SFF the value of ρRv remains constant

during capture.

The blur matrix Hm in (1) can now be constructed from

the depth map obtained using SFF and the relation between

the blur parameter σ at each pixel across the stack of LR

frames in (3). We assume here that the change in magnifi-

cation is negligible across the stack.

3. SUPER-RESOLUTION

The problem of reconstructing the high resolution image x is

an ill-posed inverse problem and some form of regularization

is necessary. We propose to derive an optimal estimate of the

HR image as the maximum a posteriori (MAP) estimate given

by

x̂ = arg max
x

P (x|y1,y2, ......,yp) (4)

The MAP framework allows us to impose a priori constraints

on the HR image. Since statistical models can encode contex-

tual constraints in images in a natural way, we model the orig-

inal HR image as a Markov random field (MRF) [11]. Specif-

ically, we model it as a Gauss-Markov random field (GMRF).

Using the degradation model in (1) and assuming that the

the noise processes are independent, we have

x̂ = arg min
x

[
p∑

m=1

‖ym − HmDx‖2

2σ2
η

+ λ
∑
c∈C

(dT
c x)2

]
(5)

where dT
c x provides a measure of smoothness of the image by

computing discrete approximations for first or second deriva-

tives at each image pixel. We assume a first order MRF neigh-

bourhood. Minimization by gradient descent is employed to

find an estimate of x. At the nth iteration, the gradient of the

cost function is given by

grad(n) =
1
σ2

η

p∑
m=1

DT HT
m(HmDx(n) − ym) + λQ(n) (6)

where Q(n) =
∑qM

i=1

∑qM
j=1 2[4x(n)(i, j) − x(n)(i, j − 1) −

x(n)(i, j + 1) − x(n)(i − 1, j) − x(n)(i + 1, j)]

Here, DT spreads equally the LR pixel intensity value at cor-

responding pixel locations in the HR image. Matrix Hm is

computed using the LR depth map obtained by the traditional

SFF method [8] and the relation among the σ values across

the stack of LR images given in (3). The regularization fac-

tor λ is typically tuned to derive the best estimate of x. One

can use a more complicated model such as the discontinu-

ity adaptive MRF [11] but a reasonably low value of λ in

the GMRF model will preserve edges well. Importantly, the

GMRF is amenable to mathematical analysis. The estimate

of the HR image at the (n + 1)th iteration is obtained as

x(n+1) = x(n) − β grad(n) where β is the step size. The

iterations continue until ‖x(n+1) − x(n)‖ < threshold.

The performance of the proposed method for superresolu-

tion can be bounded by analyzing the problem in a statistical

framework using the Cramér-Rao bound. Without loss of gen-

erality, we derive relations for the 1-D case for mathematical

convenience. Considering the degradation model given in (1),

the log-likelihood function is given by

logP (y1,y2, .....,yp|x)

=
p∑

m=1

log
1

(2πσ2
η)

M
2

−
p∑

m=1

‖ym − HmDx‖2

2σ2
η

(7)

The prior distribution of the HR one-dimensional signal, as-

suming a GMRF model is

P (x) =
1

(2π)
N
2 | 1λRx| 12

exp

{
−1

2
xT

(
Rx

λ

)−1

x

}
(8)

where the length of the signal is N . The matrix R−1
x =

DT
r Dr where Dr represents a one-step forward difference

operator.
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Matrix DT
r Dr can be approximated as a circulant matrix

which is a Laplacian operator. Therefore, the posterior CR

bound can be written as

J−1(x) =

[
1
σ2

η

p∑
m=1

DT HT
mHmD + λDT

r Dr

]−1

(9)

It is not possible to derive a closed form expression for the

CRLB due to the space-variant nature of blurring in the LR

observations. The term λDT
r Dr improves invertibility of J(x),

an effect of regularization. The above expression can be gen-

eralized to the 2-D case in a straightforward manner. The

bound gives a fundamental limit on the quality of estimates

of the unknown HR image from LR space-variantly blurred,

noisy images in SFF. The performance measure for evaluat-

ing the quality of the reconstructed HR signal is the average

mean squared error (MSE) = 1
N E

[
(x − x̂)2

]
, where x̂ is

the estimated HR signal. The posterior CR bound for the er-

ror in the estimation of x and MSE are related as MSE ≥
1
N trace(J−1(x)).

4. EXPERIMENTAL RESULTS

In this section, we first present experimental results for the

synthetic case, assuming a hypothetical ramp object for which

we simulated the SFF technique for a lens of objective 2.5x.

The focused plane was assumed to be at a distance of 8.8mm

from the lens. The translational stage was assumed to be at the

reference plane, initially at a distance of 1.4mm from the fo-

cused plane. The height of the hypothetical ramp object was

0.5mm and the space-variant blur undergone by every point

on it was computed. The size of this blur map was 60x80.

Similarly, blur maps were computed for the upward move-

ment of the stage by Δd = 0.1mm and 0.2mm, respectively,

from the reference plane. The above procedure was repeated

for 15 different values of Δd incremented in steps of 0.1mm.

Thus, we obtained 15 sets of blur maps each of size 60x80.

The corresponding CR bound given in (9) is plotted in Fig. 1

(a). This plot has a minimum at step size count k = 7, which

corresponds to Δd = 0.7mm.

For simulating the above situation with actual images we

took the Lena image, cropped it to size 120x160, decimated it

by a factor of 2 and blurred it in a space-variant manner with

each of the 15 different sets of blur maps obtained earlier.

Thus, 15 sets of LR observations were generated. An HR im-

age was estimated from each of these sets of LR observations

using the proposed algorithm and the MSE was computed in

each case. The MSE is plotted in Fig. 1 (b) for different val-

ues of Δd. It is interesting to note that the proposed algorithm

indeed yields the best HR image for Δd = 0.7mm between

the LR frames as predicted by the posterior CR bound plot in

Fig. 1 (a). One of the LR frames used is shown in (c) and the

super-resolved image corresponding to Δd = 0.7mm is shown

in (d). If the blurring had been space-invariant, the proposed
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Fig. 1. (a) Plot of the variation of the CRLB with Δd.(b) Vari-

ation of the MSE for the Lena image. (c) One of the LR im-

ages. (d) HR image reconstructed using the proposed method

for the optimal separation of 0.7mm (MSE = 30.26).

algorithm would yield the best HR image whenever one of the

LR observations came close to the focused plane. Since, here

we have space-variant blur it is difficult to give a physical in-

terpretation for the CRLB minimum which corresponds to a

particular distance of separation, Δd, between the LR frames.

Next, we present real results using the proposed method

for estimating an HR image from a stack of LR, space-variantly

blurred and degraded observations of a 3D object captured

within the SFF setting. An LV-150 Nikon industrial micro-

scope was used for imaging. The lens objective was 2.5x, for

which the working distance wd = 8.8mm, focal length f =

80mm and depth of field = 48.9μm. For this experiment, we

chose λ = 0.001, σ2
η = 5 and the step size β = 1 for gradient

descent. The upsampling factor q was chosen to be 2. The

LR images captured were of size 100x135 pixels. A ring on

which the face of a man is engraved was taken as the specimen

3D object and LR observations were captured by translating

the stage in steps of Δd = 0.025mm. We used the traditional

SFF method [8] to compute the LR depth map of the object.

Seven LR frames were chosen from the stack and the corre-

sponding blur maps were computed. The HR image was esti-

mated by the proposed algorithm using the blur maps and the

LR frames. In Fig. 2 (a) one of the LR images is shown. The

blur map of the portion of the ring corresponding to this LR

frame is shown in (b). The initial estimate for the proposed

algorithm was the bilinearly interpolated LR image shown in

(c). The super-resolved image obtained using our method is

shown in (d). The facial features have been deblurred and

come out clearly in (d) as compared to (c). The details of the

dress on the shoulders and the beard also come out quite well.

II - 71



0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

−3

−2

−1

0

1

columns

 rows

σ

(a) (b)

(c) (d)

Fig. 2. (a) LR image of a portion of a ring. (b) The corresponding blur map. (c) HR image obtained by bilinear interpolation.

(d) HR image obtained using the proposed method.

5. CONCLUSIONS

We proposed a method for obtaining a high resolution image

of a 3D object in SFF, given its space-variantly blurred, noisy

observations and the low resolution depth map. Using syn-

thetic and real images, it was shown that the quality of the

reconstructed high resolution image is quite good and can be

potentially beneficial in many applications.
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