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ABSTRACT
In a wide variety of imaging applications (especially medi-

cal imaging), we obtain a partial set or subset of the Fourier

transform of an image. From these Fourier measurements,

we want to reconstruct the entire original image. Convex op-

timization is a powerful, recent solution to this problem. Un-

fortunately, convex optimization in its myriad of implemen-

tations is computationally expensive and may be impractical

for large images or for multiple images. Furthermore, some

of these techniques assume that the image has a sparse gra-

dient (i.e., that the gradient of the image consists of a few

nonzero pixel values) or that the gradient is highly compress-

ible. In this paper, we demonstrate that we can recover such

images with GRADIENTOMP, an efficient algorithm based

upon Orthogonal Matching Pursuit (OMP), more effectively

than with convex optimization. We compare both the qual-

itative and quantitative performance of this algorithm to the

optimization techniques.

Index Terms— image reconstruction, image edge analy-

sis, algorithms, linear programming, Fourier transforms

1. INTRODUCTION

Because the discrete Fourier transform is invertible, it is a

simple matter to recover an image or a signal given all of

its Fourier coefficients. We might be led to believe that if

a signal consists of d entries, then we must have all d Fourier

coefficients to perform this inversion. A number of recent

results [1] show that this is not the case. If the signal or im-

age is sparse in certain domains (e.g., particular orthonormal

bases), then we can, with high probability, reconstruct the sig-

nal exactly with many fewer Fourier coefficients than origi-

nally thought. Several researchers refer to this paradigm as

“compressed sensing” or “compressive imaging.”

There are a number of applications in which we cannot

afford to collect a complete set of Fourier coefficients. For

example, medical imaging devices such as CT scanners and

MRIs tend to be noisy and uncomfortable for patients. It
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would be beneficial for patients if we could significantly re-

duce the number of measurements that these devices calcu-

late to generate a high quality image. Both hyperspectral and

regular imaging [2, 4] are beginning to include compressive

imaging technologies. In all of these cases, the amount of

reconstructed data is overwhelmingly large compared to the

small amount of observed measurements. It is imperative that

we develop both effective and efficient algorithms for recon-

structing images from partial Fourier measurements.

The usual techniques (such as BasisPursuit, or BP) that

perform sparse image reconstruction tend to be slow as they

rely on convex optimization techniques. For large applica-

tions, such as video processing or hyperspectral image pro-

cessing, there is too much data for this performance to be ac-

ceptable. The greedy algorithm Orthogonal Matching Pursuit

(OMP) efficiently recovers images that are sparse with respect

to the standard Euclidean basis1; however, such images are

rare. Images that have a sparse gradient, that are constant val-

ued (or nearly so) over large regions separated by edges, arise

much more often. The BP algorithm can recover such images

by making a small change to the objective function. The OMP

algorithm, on the other hand, can not.

We present a new, efficient algorithm known as GRADI-

ENTOMP, which will use OMP as a subroutine to recover im-

ages with a sparse gradient. Furthermore, we can use a much

faster, provably correct algorithm in place of the OMP sub-

routine. We show that we can recover sparse gradient images

much more efficiently than convex optimization methods and

we demonstrate the trade-off between the algorithms in re-

covering noisy images and images which do not have a sparse

gradient (e.g., textures).

2. PRELIMINARIES

Let X ∈ Cd×d be an image with a sparse gradient. By

sparse gradient, we mean that the image is sparse under the

total-variation (TV) operator. More precisely, we have that

‖TV (X)‖0 = T � d2 where ‖ · ‖0 returns the number of

1Given measurements which are dot products of the signal against Gaus-

sian random variables, we can prove that OMP recovers the signal [6].
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non-zero pixels of its argument and

TV (X)i,j = |∇X|i,j
=

√
(Xi+1,j − Xi,j)2 + (Xi,j+1 − Xi,j)2.

Figure 1 is an image of the Shepp-Logan Phantom and its

image under the TV operator. Observe that the latter image is

sparse while the former is not.

Fig. 1. Shepp-Logan Phantom and its edges.

Suppose that Ω ⊂ {0, · · · , d − 1}2 is some uniformly

random subset of frequencies of size |Ω| = N . Let FΩ :
Cd×d → CN denote the Fourier transform operator restricted

to Ω and let FΩX ∈ CN represent the given partial Fourier

measurements of X . The image reconstruction problem is to

find X given FΩX .

One approach to the problem is to solve the convex opti-

mization problem

XR = argmin
Y

||TV (Y )||1 s.t. FΩY = FΩX. (2.1)

In [1], the authors prove if T = ||TV (X)||0 ≤ C(log d)−1N ,

then, with high probability, the solution XR to the convex

program of Equation 2.1 is unique and equal to X . We refer

to this procedure as TV-minimization.

There are two challenges in devising an efficient algo-

rithm to recover TV (X) from FΩX . First, we cannot directly

obtain the Fourier coefficients of the image TV (X) from the

Fourier coefficients of the original image FΩX . Second, if we

do reconstruct the image TV (X), we cannot easily recover X
as TV (·) is not an invertible operator.

The solution is to find a different sparsifying operator Ψ
which fulfills the following three conditions.

1. Ψ must be invertible in a numerically stable way.

2. We must be able to express FΩΨX in terms of our ob-

served Fourier coefficients FΩX; i.e., there exists an

operator Σ such that ΣFΩX = FΩΨX .

3. We must have ||ΨX||0 ≤ K||TV (X)||0 for some con-

stant K, i.e. X must be at least asymptotically as sparse

under Ψ as it is under the total-variation operator.

The first two conditions address the above challenges while

the last condition guarantees that reconstring ΨX requires

about the same amount of data as reconstructing TV (X).
If we let Ψ be a directional derivative in some direction,

then we satisfy the above criteria and can devise a rather naive

algorithm which performs poorly. In the next section, we in-

troduce a more sophisticated approach which relies on two

orthogonal directional derivatives.

3. GRADIENT ORTHOGONAL MATCHING
PURSUIT

Let (DvX)i,j = Xi,j − Xi−1,j and (DhX)i,j = Xi,j −
Xi,j−1 be two discrete derivatives in the vertical and horizon-

tal directions, respectively. Observe that we can express these

derivatives as linear functions of our partial Fourier measure-

ments,
(DvX) = (1 − e−2πik1/d)FΩX

(DhX) = (1 − e−2πik2/d)FΩX

where (k1, k2) ∈ Ω and we perform the operations element-

wise. Furthermore, these derivatives are invertible. Let

(D−1
v X)i,j =

i∑
k=1

Xk,j

denote the discrete anti-derivative in the vertical direction. We

define D−1
h X similarly. Observe that if we know both dis-

crete directional derivatives DvX and DhX , we can recover

X by solving a simple system of differential equations. First,

we integrate horizontally and find

(D−1
v DvX)i,j = Xi,j + Hi,j

where H is an arbitrary image that is constant in the vertical

direction. Next, we solve for H by observing that its horizon-

tal derivative is

(DhH)i,j = (DhD−1
v DvX)i,j − (DhX)i,j

and that we can invert the right-hand side of the above ex-

pression by computing its anti-derivative in the horizontal di-

rection. Once we know H , we subtract it from (D−1
v DvX)

to estimate X . Assuming periodic boundary conditions and

that the set of frequencies Ω contains the set {(k1, 0), (0, k2)}
with k1, k2 ∈ {0, . . . , d− 1}, then this process can be carried

out easily and stably in the frequency domain.

The main idea of the algorithm is to reconstruct DvX and

DhX independently using OMP, then to solve for X as out-

lined above.

Algorithm 1. GRADIENTOMP

INPUT:
• A set of Fourier measurements FΩX ∈ C

N including
the frequencies:
{(k1, 0), (0, k2)|k1, k2 ∈ {0, · · · , d − 1}}.

• The numbers Tv and Th of non-zero entries in DvX
and DhX respectively.

OUTPUT:

• The reconstructed image XR.
PROCEDURE:

1. Initialize the residuals
rv,0 = (1 − e−2πik1/d)FΩX

rh,0 = (1 − e−2πik2/d)FΩX

where (k1, k2) ∈ Ω.
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2. Perform OMP twice to recover DvX and DhX from
rv,0 with Tv iterations and rh,0 with Th iterations, re-
spectively.

3. Solve for XR using the equation

XR = D−1
v [DvX]+D−1

h [DhX]−D−1
h D−1

v Dh[DvX]

where all items in brackets were estimated via OMP.

4. TV-MINIMIZATION VS. GRADIENTOMP
Although a great deal of work has been done in the area,

no metric truly captures the details and errors that are ap-

parent to the eye. As a result, we have both objective and

subjective results comparing the two primary sparse gradi-

ent image reconstruction algorithms: TV-Minimization and

GRADIENTOMP. We demonstrate that for images with sparse

gradients, the GRADIENTOMP algorithm performs better than

TV-minimization both in reconstruction error and runtime and

that both algorithms’ performance suffers on non-sparse im-

ages.

For the objective comparison, we used a 32 × 32 Shepp-

Logan phantom. For various values of N (the number of

given Fourier coefficients), we chose several uniform randomly

generated frequency subsets Ω and compared the two algo-

rithms using the following three criteria: �1 reconstruction

error, probability of exact reconstruction, and runtime in sec-

onds. For TV-Minimization, we used L1Magic [5]. The re-

sults of our experiment are shown in Figure 2. We can see

that the �1 reconstruction error decays more rapidly with the

GRADIENTOMP algorithm than with TV-minimization. Also,

GRADIENTOMP’s probability of exact reconstruction con-

verges to one faster as a function of N . Finally, as expected,

GRADIENTOMP has a much faster runtime.

For a subjective comparison, we compare the reconstruc-

tions of various images pictorially. We begin with a 512×512
Shepp-Logan phantom with 15% of its Fourier coefficients

given. The various reconstructions can be seen in Figure 3. In

this case, the TV-Minimization algorithm performed poorly

whereas GRADIENTOMP quickly gave us a near perfect re-

construction on a large image using a small fraction of Fourier

coefficients. The backprojection image refers to setting all

unknown Fourier coefficients to zero and then applying an in-

verse Fourier transform.

Next we test a 128 × 128 Shepp-Logan phantom with

AWGN (SNR ≈ 20 dB). With medical images, it is typi-

cal to assume that the SNR will be worse than 40 dB. The

reconstructions are shown in Figure 4. It is interesting to ob-

serve that TV-minimization gives a cleaner image but soft-

ens the details. As a result, some features such as the small

ellipses in the bottom part of the image are missing. How-

ever, in the GRADIENTOMP reconstruction, despite the ob-

vious vertical line errors present, all the important features of

the original image are present. Thus, we have a clear trade-

off between the two algorithms. When TV-minimization be-

gins to fail, it smooths out important details whereas when

Fig. 2. The �1 reconstruction errors, probabilities of ex-

act reconstruction, and runtimes of TV-minimization and

GRADIENTOMP

GRADIENTOMP begins to fail, it introduces vertical stripes

but maintains the important details. The larger the image, the

less these stripes impact the appearance of the image. A very

surprising result of our experiment is that the GRADIENTOMP

reconstruction has a smaller �1 error than the original noisy

image.

Next we compare the performance of both algorithms on

images that do not have sparse gradients. The first image is a

128× 128 version of Lena. The second image is a 128× 128
straw texture whose nature is far from that of a sparse gra-

dient image. The results can be seen in Figure 5. Both TV-

minimization and GRADIENTOMP yield poor reconstructions

in these extreme cases. The former does seem to perform

slightly better, but not without the cost of severe high fre-

quency attenuation.

5. CONCLUSIONS AND FUTURE WORK
The GRADIENTOMP algorithm is a new algorithm which

significantly reduces the amount of time needed to recover
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Original 512 by 512 Phantom Back Projection with Inverse Fourier Transform

TV-Minimization Reconstruction GRADIENTOMP Reconstruction

Fig. 3. Comparison of 512 by 512 Shepp-Logan Phantoms

with 15% of the Fourier coefficients known.

Original TV-Minimization GRADIENTOMP
�1 Error = 392 �1 Error = 596 �1 Error = 349

Fig. 4. Comparison of 128 by 128 noisy Shepp-Logan Phan-

toms with 40% of the Fourier coefficients known.

Original Lena TV-Minimization GRADIENTOMP
�1 Error = 726 �1 Error = 1086

Straw Texture TV-Minimization GRADIENTOMP
�1 Error = 2346 �1 Error = 4974

Fig. 5. Reconstructions of non-sparse gradient images with

40% of Fourier coefficients known.

a sparse-gradient image from a partial set of Fourier trans-

form coefficients. It is significantly faster than TV minimiza-

tion and may be more appropriate for large scale imaging

problems such as hyperspectral imaging. We need efficient

image reconstruction algorithms for these applications as the

amount of data they generate is quite large. In fact, for large

enough images, algorithms which run in linear time (in the

image size) are not sufficiently fast. The GRADIENTOMP al-

gorithm has the property that the OMP step can be replaced by

any sublinear algorithm, such as that in [3], that performs the

same action. In addition, rather than running two independent

instances of OMP for the vertical and horizontal directions,

we could use Simultaneous Orthogonal Matching Pursuit as

described in [7]. This algorithm couples the horizontal and

vertical directions.

Finally, GRADIENTOMP assumes that we have partial

Fourier information. The algorithm relies upon a crucial prop-

erty of the Fourier transform—it diagonalizes differentiation.

There are other orthonormal transforms in which the deriva-

tive operator is almost diagonal and there are binary versions

of the Fourier transform (e.g., the Hadamard transform). We

are currently extending our ideas to these cases.

Compressive imaging presents exciting opportunities for

new imaging technologies and algorithmic advances. While

our research covers only a small component of this area, it is

clear that we need a variety of reconstruction algorithms to

match our technological advances.
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