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ABSTRACT
In digital imaging applications, data are typically obtained via a spa-
tial subsampling procedure implemented as a color filter array—a
physical construction whereby only a single color representative is
measured at each pixel location. Owing to the growing ubiquity of
color imaging and display devices, much recent work has focused on
the interplay between color filter array design and subsequent digi-
tal processing, including in particular the canonical spatio-chromatic
reconstruction task known as demosaicking. Here we consider the
problem of improved color filter array design, leading to enhanced
image fidelity. We first analyze the limitations of the well-known
Bayer pattern, currently most popular in industry. We then propose
a framework for designing rectangular color filter arrays amenable to
efficient and completely linear reconstruction, and provide examples
of new patterns that enable improvements in reconstruction quality.

Index Terms— Image sensors, color measurement, image sam-
pling, image reconstruction, image color analysis

1. INTRODUCTION

Owing to the growing ubiquity of color imaging devices, much re-
cent work has focused on the interplay between their acquisition
stages and subsequent digital processing. In most applications, data
are obtained via a subsampling procedure implemented as a color
filter array (CFA), a physical construction whereby each pixel loca-
tion measures only a portion of the visible spectrum, selected from
amongst a chosen “color partition” of that spectrum—typically cor-
responding to long, medium, and short wavelengths—which in turn
induces a spatial sampling pattern for each such color representative.
This array represents one of the first steps in the acquisition pipeline,
and hence CFA design determines to a great extent the maximal reso-
lution achievable by subsequent processing schemes. These schemes
typically assume a full-color image (i.e., a full set of color triples),
and consequently, a key reconstruction task termed demosaicking is
first necessary. This refers to the inverse problem of reconstructing a
spatially undersampled set whose components correspond to partic-
ular tristimulus values—typically red, green, and blue.

An ideal demosaicking solution would exhibit two main traits:
low computational complexity for efficient hardware implementa-
tion, and amenability to analysis for accurate noise suppression. For
instance, in the absence of further assumptions on the relationships
between tristimulus values, the optimal linear reconstruction is in-
dicated by an orthogonal projection onto the space of bandlimited
functions, applied separately to each subsampled color channel. How-
ever, it is well known that this solution produces unacceptable arti-
facts, owing to the correlation amongst color components in typical
images; witness the large literature on (necessarily nonlinear and
heuristic) contemporary demosaicking schemes, as reviewed in [1].

2. COLOR FILTER ARRAY ANALYSIS

To explain the failure of linear reconstruction methods in the demo-
saicking context, it is helpful to analyze the spatio-spectral proper-
ties of typical color images and the Fourier representations that CFA
samplings induce. The most well known of these patterns involve
the canonical tristimulus values of red, green, and blue; in particular,
the popular Bayer pattern CFA [2] attempts to complement humans’
spatial color sensitivity via a quincunx sampling of the green com-
ponent that is twice as dense as that of red and blue (see Figure 3(a)).
Though the Bayer pattern remains the industry standard, a number
of alternative color partitions and geometries have been considered
over the years—several of which are reviewed in [3].

In each case the regular, repeating CFA pattern comprises a tiling
of the image plane formed by the the union of interleaved sampling
lattices [4]; such representations are most easily analyzed accord-
ing to their lattice structure [5]. While space limitations preclude
an extended discussion, we remind the reader that lattices constitute
a discrete Abelian group under addition, and hence admit as their
Fourier transform a so-called dual lattice. The spectral periodicity
properties of a color image sampled along a lattice are determined
by this dual lattice (the Poisson summation formula being a simple
univariate example), thereby enabling us to characterize the effect on
individual color channels of the spatio-spectral sampling induced by
various CFA patterns. According to the discrete and periodic nature
of these patterns, the dual lattice defines a unit cell whose copies in
turn form a tessellation of the spatial frequency plane.

To make this notion precise, let n ∈ Z
2 index pixel location, and

denote the corresponding color triple x(n) = (r(n), g(n), b(n)).
The Bayer pattern, as well as others that attempt to measure tris-
timulus values, can then be represented conceptually in terms of
a green channel g and two difference channels α = r − g and
β = b − g, whose Fourier transforms will be denoted respectively
by G = F(g), A = F(α), and B = F(β). The advantage of this
representation, as noted by [4, 6], is that these difference images can
serve as a proxy for chrominance, whereas the green channel can be
taken to represent luminance. It is known how to explicitly compute
the spectral representation induced by the spatial subsampling of a
particular CFA pattern; for the case of the Bayer pattern, see [4, 6, 7].

Because the spatio-spectral content of color channels tends to
be correlated at high spatial frequencies [1, 8], the difference chan-
nels α(n) and β(n) typically occupy less bandwidth than the green
channel g(n), as shown in Figure 1 overleaf. This correlation ex-
plains in large part the poor performance of naive linear reconstruc-
tion attempts, and is exploited (either implicitly or explicitly) in
most contemporary Bayer-pattern demosaicking methods [3]. In
fact, as shown in [4, 6], the subsampling lattices which comprise the
Bayer pattern induce spectral copies of the difference signals cen-
tered about the set of carrier frequencies {(0, π), (π, 0), (π, π)} (see
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(a) Green spectrum G (b) Difference A(ω) (c) Difference B(ω)

Fig. 1. Log-magnitude spectra of a typical color image (“light-
house”), showing: (a) g(n) component, (b) difference image
α(n) = r(n)− g(n), (c) difference image β(n) = b(n)− g(n).

(a) Radially symmetric (b) Horizontal feature (c) Vertical feature

Fig. 2. (a) Idealized spectrum of Bayer pattern sensor image, with
spectral replication of A and B about {(0, π), (π, 0), (π, π)}. (b)
Locally horizontal image feature. (c) Locally vertical image feature.
To simplify notation, multiplicative constants have been omitted.

Figure 2). Hence, by reducing allowable spectral bandwidth along
these axes, the Bayer spectral periodization (as well as that of oth-
ers reviewed in [3]) is sensitive to the very horizontal and vertical
features which frequently dominate typical images [9].

Figures 2(b) and 2(c) indicate these scenarios, respectively; it
may be seen that in contrast to the radially symmetric baseband
spectrum of Figure 2(a), aliasing occurs along one of either the hor-
izontal or vertical axes with respect to α − β. However, successful
reconstruction can still occur if the non-corrupted copy of α − β
is recovered, thereby explaining the popularity of (nonlinear) direc-
tional filtering steps [3, 4, 7]. We can therefore view the CFA design
problem as one of spatial-frequency multiplexing, and the CFA de-
mosaicking problem as one of demultiplexing to recover subcarriers,
with spectral aliasing given the interpretation of “cross talk” [4].

3. COLOR FILTER ARRAY DESIGN

Having identified several obstacles presented by the Bayer pattern
itself, we now move to consider the more fundamental question of
CFA design. Assuming a regular, repeating rectangular pattern, and
putting aside issues of white-balancing and sensor noise, the analy-
sis above motivates us to consider linear combinations of the Bayer
pattern filters. Considering convex combinations of “prototype” fil-
ter specifications {cr, cg, cb}, we are left with three design parame-
ters: the number of distinct color filters, their specifications in terms
of linear combinations, and the geometry of the chosen CFA pattern.

To wit, let 0 ≤ cr(n), cg(n), cb(n) ≤ 1, with cg(n) = 1 −
cr(n) − cb(n), represent the CFA projection values at a particular
spatial location. Then at pixel location n, the image sensor measures
a mixture of prototype channels according to y(n) as follows [10]:

y(n) =g(n)cg(n) + r(n)cr(n) + b(n)cb(n) (1)

=g(n) + cr(n) [r(n)− g(n)] + cb(n) [b(n)− g(n)]

=g(n) + cr(n)α(n) + cb(n)β(n).

Recalling the lowpass properties of α(n) and β(n), we see that
our formulation of the CFA design problem enables us to modulate
these terms via multiplication with cr(n) and cb(n), such that the
Fourier transforms of the frequency-modulated difference images
are maximally separated from the baseband spectrum of g(n). To
accomplish this task, let us assume that the Fourier transforms of cr

and cb, respectively, take the form

{F(cr) = s0δ(ω) +
∑

i,i�=0
[siδ(ω + ωi) + s̄iδ(ω − ωi)]

F(cb) = t0δ(ω) +
∑

i,i�=0
[tiδ(ω + ωi) + t̄iδ(ω − ωi)]

,

where ·̄ denotes complex conjugation; symmetry ensures that the
resultant cr, cb are real valued. It follows that the Fourier transforms
of products cr(n)α(n) and cb(n)β(n) are the sums of modulated
difference images, and hence that of the observed sensor image y is

F(y) = F(g + crα + cbβ) = G(ω) + s0A(ω) + t0B(ω)

+
∑

i,i�=0
[(siA + tiB)(ω + ωi) + (s̄iA + t̄iB)(ω − ωi)] .

This approach enables the specification of CFA design param-
eters directly in the Fourier domain, by way of carrier frequencies
{ωi} and weights {si, ti}; determination of the resultant color filters
and lattice geometry follows by inverse Fourier transform. Hence,
we may aim to design CFA patterns such that the spectrum F(y)
of the observed sensor image y can be mapped to a baseband com-
ponent G + s0A + t0B and modulated signals siA + tiB and
s̄iA + t̄iB in such a way as to minimize spectral overlap.

Taking the Bayer representation shown in Figure 2 as a motivat-
ing example, we see that carrier frequencies should be restricted to
the perimeter of the unit cell of the CFA’s dual lattice, but moved
away from the frequency axis intercepts (0, π) and (π, 0) in order
to maximize the allowable alias-free spectral radii of the baseband
and modulated components. Note that we assume a worst-case ra-
dial symmetry independent of the edge orientations of any particular
image; however, we can expect to see even greater performance im-
provements in images where horizontal and vertical edges dominate.
Constraining carrier frequencies to be rational multiples of π will
ensure periodicity of the resultant CFA pattern, and nonnegativity
of cr(n) and cb(n) (necessary for physical realizability) is ensured
by setting DC coefficients s0 and t0 sufficiently large to outweigh
the negative pixel-domain values introduced by {si, ti} for i �= 0.
The size of the weights {si, ti} for i �= 0 will in turn will affect ro-
bustness to any worst-case chrominance-on-luminance aliasing that
might occur, and thus should be chosen to be as large as possible
within the constraint of physical realizability described above.

4. EXAMPLE PATTERNS AND RECONSTRUCTIONS

The criteria outlined above provide a clear set of guidelines for spatio-
spectral CFA design; once a pattern size has been selected, numerical
optimization schemes may be used to generate admissible patterns.
To this end we provide three example patterns designed “by hand”
to yield closed-form expressions, as shown in Figures 3(b)–3(d) and
Table 1. While these patterns are each distinct from the Bayer pattern
in color and geometry, their pixels all maintain equal numbers of ad-
jacent colors—an important consideration in minimizing the effects
of optical and electrical cross talk between neighboring pixels [3].

To investigate the efficacy of these example patterns and their
corresponding linear demosaicking schemes, a standard test set of
twenty digital Kodak images originally acquired on film [8] was used
to provide full-color proxy data for purposes of comparison to exist-
ing algorithms. In keeping with standard practice in the literature,
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(a) Bayer pattern (b) Pattern I (c) Pattern II (d) Pattern III

(e) Bayer image spectrum (f) Pattern I image spectrum (g) Pattern II image spectrum (h) Pattern III image spectrum

Fig. 3. New CFA designs evaluated in the experiments of Section 4 (top row): (a) Bayer pattern, (b) pattern I, (c) pattern II, (d) pattern III.
Respective log-magnitude spectra of sensor images representing the “lighthouse” test image are shown in the bottom row (e–h).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. Top row: (a) Detail of original “lighthouse” image; (b–e) Sensor images using Bayer pattern, pattern I, pattern II, and pattern III,
respectively. Bottom row: (f) State-of-the art reconstruction of (b) according to [8]; (g–j) Optimal linear reconstruction of (b–e), respectively.
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CFA Transforms F(cr) (top row) and F(cb) (bottom row)
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Table 1. Examples of new color filter array designs based on the
method outlined in Section 3. Note that cg(n) = 1−cr(n)−cb(n).

simulated data y(n) were obtained for each CFA pattern by “sens-
ing” these test images according to (1). Two contemporary nonlinear
demosaicking algorithms [8, 11] were tested in conjunction with the
Bayer CFA pattern, and a simple linear demosaicking scheme was
employed for each of the three alternative patterns, in which the sen-
sor data were subjected to bandpass filtering in order to recover the
modulated difference signals and effect the full-color reconstruction.

A typical example is provided by the “lighthouse” image of Fig-
ure 4(a), for which simulated sensor data are shown in Figures 4(b)–
4(e), along with their corresponding log-magnitude spectra in Fig-
ures 3(e)–3(h). While the Bayer-pattern sensor image of Figure 3(e)
indicates aliasing along both the horizontal and vertical axes owing
to spectral copies of the difference images α − β, the frequency-
modulated difference images in Figures 3(f)–3(h) have each been
shifted well away from the horizontal and vertical axes. Not only
does this effect reduce the possibility of aliasing due to horizontal
and vertical edges, but it also increases the allowable baseband spec-
tral radius overall, for fixed sensor size relative to the Bayer pattern.

Figures 4(f)–4(j) show reconstructions of the “lighthouse” im-
age. Compared to the nonlinear Bayer demosaicking method of [8]
shown in Figure 4(f), as well as to the linear reconstruction shown
in Figure 4(g) (whose computational complexity is equal to those
of Figures 4(h)–4(j)), the proposed CFAs each yield a marked im-
provement in visual quality. While we caution that reconstruction
results are inevitably a function of the particular demosaicking algo-
rithm employed, and that the test set images cannot provide a true
proxy for multi-spectral image data, these results provide encourag-
ing evidence in support of the potential of alternative CFA patterns
designed to minimize spatial aliasing and enable simple linear recon-
struction schemes. Summary statistics of mean squared error (MSE)
measurements shown in Table 2 (averaged over all color channels
of the entire 20-image test set) also support this notion; mean and
median MSE statistics are improved relative to the state of the art in
almost all cases, often by ten percent or more.

5. CONCLUSION

In this paper, we have introduced a new design methodology for CFA
patterns in terms of convex combinations of “prototype” color fil-
ters whose spectral sensitivities correspond to those of typical red,
green, and blue filters in current use. By specifying the desired
spatio-spectral response directly in the Fourier domain and provid-
ing a corresponding set of optimization criteria, we are able to design
patterns that increase the available spatial resolution for fixed sensor
size. This design methodology not only sheds light on the failure
of simple, linear demosaicking methods in the case of existing color

Summary Bayer CFA Proposed CFA Patterns

MSE Statistic [8] [11] I II III

Mean 9.97 14.64 8.08 8.99 10.17

Median 8.41 10.99 6.38 7.24 7.65

Minimum 3.99 4.42 2.56 2.77 3.11

Maximum 24.06 47.72 23.11 25.38 36.57

Range 20.07 43.30 20.55 22.61 33.46

Std. Dev. 6.09 11.15 5.20 5.78 7.86

Table 2. Performance comparison for various CFA patterns and re-
construction methods tested on the 20 Kodak test set images of [8].

filter arrays such as the well-known Bayer pattern, but also provides
for efficient linear demosaicking and a potential for improvements
in reconstruction quality for natural images. Our immediate inter-
est is in studying the value of these new patterns to industry from a
cost-benefit perspective; to this end future work will include an in-
vestigation of noise robustness and performance for various classes
of typical images under different illuminants, as well as a careful
formulation of meaningful optimality criteria in CFA design overall.
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