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ABSTRACT

The proposed algorithm in this work provides superresolution for
color images by using a learning based technique that utilizes both
generative and discriminant approaches. The combination of the two
approaches is designed with a stochastic classification-regression frame-
work where a color image patch is first classified by its content, and
then, based on the class of the patch, a learned regression provides
the optimal solution. For good generalization, the classification por-
tion of the algorithm determines the probability that the image patch
is in a given class by modeling all possible image content (learned
through a training set) as a Gaussian mixture, with each Gaussian
of the mixture portraying a single class. The regression portion of
the algorithm has been chosen to be a modified Support Vector Re-
gression, where the kernel has been learned by solving a semidef-
inite programming (SDP) and quadratically constrained quadratic
programming (QCQP) problem. The SVR is further modified by
scaling the training points in the SDP and QCQP problems by their
relevance and importance to the examined regression. The result is
a weighted average of different regressions depending on how much
a single regression is likely to contribute, where advantages include
reduced problem complexity, specificity with regard to image con-
tent, added degrees of freedom from a nonlinear approaches, and
excellent generalization that a combined methodology has over its
individual counterparts.

Index Terms— Interpolation, Nonlinear functions

1. INTRODUCTION

Single image superresolution is the process of using added, assumed,
or made-up information in combination with a single low-resolution
image to produce a high-resolution image. This information can
come in many forms, including but not limited to a set of shifted
low-resolution images of a single scene, assumed relationships be-
tween existing pixel values and edges [1], a training set, or any other
data that would aid in enhancing visual acuity.

Our algorithm is concerned with maximizing information inher-
ent within a training set of known input-output image pairs, while
also considering imaging properties including the similarity of our
domain to the range. This work is most similar to [2], though the
concept of operating in the range space has been originally identified
in bilateral filtering [3] and since improved in several other papers.
In a series of previous works [4, 5, 6], techniques involving support
vector regression (SVR) are examined and improved for prediction
purposes of unknown high-resolution values based on low-resolution
image patches. The novelty in [6] and this work is that, in addition to
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added flexibility by the nonlinear regression in SVR, classification is
introduced, further improving generalization and training ability.

The stochastic framework combining classification and regres-
sion is taken from [2], where the conditional expectation of high-
resolution values given low-resolution patches determines a regres-
sion drawing from a “semi-segmented”-domain. This type of seg-
mented regression allows for a variety of content without losing
specificity to unique inputs. For image processing, this property is
especially advantageous because methods such as [3] are unable to
match the variety that the proposed algorithm obtains through classi-
fication, while linear filtering in [2] provides less accuracy and speci-
ficity that is available in scalable nonlinear regression via SVR.

The remainder of this paper focuses on the capacity of the pro-
posed algorithm to provide color image superresolution and is orga-
nized as follows. Section 2 briefly reviews and subsequently op-
timizes the support vector machine for regression by using well-
known kernel learning techniques. Section 3 explains the incorpora-
tion of SVR into a classification framework and the necessary mod-
ifications needed to do this. Section 4 investigates the extension of
the proposed algorithm from gray-scale to color images, including
the explanation of which features to use and in what manner they are
considered.

2. OPTIMAL KERNELS FOR
SUPPORT VECTOR REGRESSION

The support vector machine (SVM), originally proposed in [7], is
a supervised learning technique that determines a high-dimensional
functional from a training set Ω,

Ω = {(x1, y1) , (x2, y2) , ..., (xN , yN )} . (1)

The goal of SVR is to use relationships learned through Ω, and be
able to generalize these relationships to unseen test points. In (1),
xi ∈ Rn and yi ∈ R,∀i ∈ [1, N ], and SVR estimates the function
f : x → y by ŷ = w · φ(x) + b in the following optimization:

min
w,b,ξ

(
1

2
||w||2 + C

N∑
i=1

(
ξ+

i + ξ−i
))

subject to

(w · φ(xi) + b) − yi ≤ ε + ξ+
i

yi − (w · φ(xi) + b) ≤ ε + ξ−i

and
ξ−i , ξ+

i ≥ 0, ∀ i ∈ [1, N ] (2)

The high-dimensional mapping φ : X �→ F in (2) often better suits
a representation of complicated relationships which could otherwise
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not be linearly realized. Within F , a kernel function K(s, t) written
as a kernel matrix K(·, ·) is defined to be a collection of dot products
for an arbitrary φ that may or may not be known. With this in mind,
the dual to (2) can be found and is written in (3).

max
α+,α−

−1

2

∑
i,j

{
(α+

i − α−
i )(α+

j − α−
j )K(xi,xj)

}
−ε

∑
i

(α+
i + α−

i ) +
∑

i

yi(α
+
i − α−

i )

subject to

∑
i

(α+
i − α−

i ) = 0 and 0 ≤ α
+/−
i ≤ C

with the solution hyperplane as

g(x) =
∑

i

(α+
i − α−

i )K(x, xi) + b (3)

where a dot product in F is defined by K(s, t) = φ(s) · φ(t), the
kernel function.

Using the kernel matrix K, computational complexity is reduced
because determining d = φ(s)·φ(t), which is quite often intractable,
is unnecessary when solving (3). This definition also allows φ to be
unknown, in which case, K can be conceptually chosen to be a de-
sired similarity metric depicting the “nearness” of two vectors. Thus,
the selection of the kernel matrix K becomes important and should
be sensitive to the training data. This section describes learning an
optimal K by using semi-definite programming (SDP) and quadrat-
ically constrained quadratic programming (QCQP) problems, which
were initially derived in [5].

2.1. The SDP Problem

To simplify, allow e to be a vector of all ones, and

α+ + α− = β+

α+ − α− = β−
(4)

Also, let the final, optimized kernel be defined by Kopt =
∑

i μ∗
i ki,

a linear combination of known, calculated kernels ki weighted by
elements in μ∗. While full derivations can be seen in [5], we are able
to determine the optimal kernel Kopt by using the aforementioned
substitutions in (4) for Kopt, writing the Lagrangian, taking the dual
of (3), and using the Schur complement lemma. This yields the final
optimization problem shown in (5).

min
μ,t,λ,ν+

u ,ν−
l

,ν−
u

t

s.t.

(
2K γ
γT t − 2CeT (ν+

u + ν−
u )

)
� 0

ν+
u , ν−

u , ν−
l � 0

εe + ν+
u + ν−

u − ν−
l � 0∑

i

μiki � 0

trace(
∑

i

μiki) = c (5)

This result is general and can be applied to any regression problem.

2.2. The QCQP Problem

The QCQP arises from an added constraint, μi ≥ 0, which loses
some generality, though it does ensure positive definiteness when
inductively applying the learned kernel. On the other hand, the com-
plexity of the kernel is never simplified because the positive eigen-
values of each (μiki) will never reduce kernel rank.

The formulation we obtained is derived in the same manner as
[8], and the full solution is shown in [5], and is given in (6).

max
β+,β−,p

2yT β− − 2εeT β+ − cp

s.t. p ≥ β−kiβ
−

eT β− = 0

0 	 β+ + β− 	 2C

0 	 β+ − β− 	 2C (6)

The μi values come out of the dual Lagrangian variables.

3. STOCHASTIC FRAMEWORK FOR A
COMBINATIONAL TECHNIQUE

The proposed algorithm partitions the problem into smaller, more
solvable problems according to data similarity. Therefore, for super-
resolution, like image patches are treated similarly, and the notion of
different types of image content such as edges, texture, etc., is intro-
duced and utilized. These types of content can be realized as classes
if the data were to be classified. With this terminology in mind, the
overall process can be described by 1.) using an initial preprocessing
stage where the probabilities of an input being in particular classes
are found, 2.) obtaining high-resolution outputs by using a modified
version of the regressions described in Sec. 2, and finally 3.) sum-
ming the result of each regression weighted by the probability that it
is in a given class. With certain assumptions on the representation of
our SVR, this procedure conceptually describes the expected value
of the output as will be demonstrated in the remainder of this section.

3.1. Clustering Image Content

Let ILR and IHR be the low and high-resolution image patches with
sizes D × D and U × U respectively. To superresolve the center
pixel of ILR by a factor of U , we define vectors

x = vectorize(ILR) − center pixel(ILR) ∈ R
D2×1

y = vectorize(IHR) − center pixel(ILR) ∈ R
U2×1

(7)

in a given training set Ωc of xi feature and yi label pairs. The sub-
script c in Ωc denotes the classification training set.

As in [2], to generalize over all image content, we assume that
we can model image patches by a Gaussian mixture model (a sum
of scaled Gaussians). By adding a level abstraction, we can think of
each Gaussian in the Gaussian mixture as a particular class, believing
that like images tend to cluster. Therefore, a numerical quantity can
be extrapolated for the probability that an image patch x belongs in
class j by evaluating P (x|J = j) = G(x, μ, Σ), where J is the
random variable denoting the class of x, and the parameters μ and Σ
are obtained through Expectation Maximization (EM).

The usage of this quantity becomes clear because the framework
of our solution g(x) is derived from the conditional expectation of
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our output, the high-resolution pixels, given the input, low-resolution
patches, and training data. This is expressed in (8).

g(x) = E[y|x, Ωc]

=
∑

j

E[y|x, J = j]P (J = j|x) (8)

where g(x) uses the training set Ω to estimate f : x �→ y.
Using Bayes’ law, the value of P (J = j|x) can be obtained:

P (J = j|x) =
P (x|J = j)P (J = j)∑
j P (x|J = j)P (j = j)

(9)

Using the probability of a given image patch x lying in a par-
ticular class, a smaller regression results, considerably simplifying
the effort because instead of dealing with the entire space of image
patches, we can concentrate on a specific class of image content.
That is to say, the expected output, E[y|x, J = j], is easier to calcu-
late than E[y|x], where the information J = j is not provided.

3.2. Modified Support Vector Regression

The class conditional expectation, E[y|x, J = j], in (8) is more diffi-
cult to estimate. Our proposed algorithm attempts a straightforward
and scalable technique of approximating it by using a regression de-
vice, i.e. E[y|x, J = j] = gj(x).

There are situations where it is undesirable to use the same input
for classification as the input for regression. For example, if we wish
to cluster on 3 × 3 features (i.e. x ∈ R9×1), but SVR can offer a
good solution only if its input is of larger dimension (e.g. 5 × 5),
then the gj would benefit if its domain were to reflect this. That is to
say, instead of gj taking in x, we can use z instead, where z promotes
flexibility in the choice of domain. In the case of our proposed al-
gorithm, for luminance prediction, z ∈ R25×1. In terms of the new
substitutions, the solution becomes

E[y|x, z] =
∑

j

gj(z)P (J = j|x), (10)

and our approach is to apply SVR to estimate gj(x).
For good generalization, more discretion is needed when con-

sidering the relevancy of training points. In other words, the more
likely a point is in a class, the more the SVR should consider the
point in the regression. From the dual problem in (3), the weight-
ing of training points by their importance is analogous to the effect
of C on the solution hyperplane. The C variable is actually a cost
parameter whose value comes out of cross validation. In the dual

problem, the larger the cost parameter, the more the α
+/−
(i,j) values

can deviate for an exact regression, in effect granting freedom to
closely fit the training data in exchange for flatness in the objective

function. Therefore, for pair (zi, yi) ∈ Ωr , limiting α
+/−
(i,j) , also lim-

its the effect of the ith point on the solution hyperplane. In terms
of the primal problem in (2), C scales the slack variables ξ+

(i,j) and

ξ−(i,j), restricting the quantity of points deviating from the solution

hyperplane and by how much these points deviate.
Our answer is to scale each ξi for all points in Ωr (subscript r

for regression) by how relevant the ith point is to class j. This can be

done with the product of all ξ
+/−
(i,j) with their corresponding posterior

probabilities Pij . So, for the jth regressor, the primal optimization
problem is described by

min
wj ,b

1

2
‖wj‖2 + C · −−→Pj|i (J = j|xi)

T (
−→
ξ+

j +
−→
ξ−j )

subject to

yi − (wj · φ(zi) + bj) − ε ≤ ξ+
(i,j)

(wj · φ(zi) + bj) − yi − ε ≤ ξ−(i,j)

ξ−(i,j), ξ
+
(i,j) ≥ 0 (11)

where
−−→
Pj|xi

(J = j|xi) denotes a vector of length N containing the
posterior probabilities of classes. This way, we can allow more slack
for the variables that are less important (i.e. have smaller posterior
probabilities.) The probability vector in (11) can be equivalently
placed throughout the rest of the derivations in Sec. 2.

This solution has the potential to consume extensive computa-
tion both in CPU cycles and memory, and so a simplification of the
problem would be to consider per class those points which meet a
certain criterion with respect to their respective posterior probabili-
ties. This is implemented by partitioning Ωr into {Ωj} and consid-
ering the ith point for class j only if its posterior probability exceeds
a certain threshold. Granted, this simplification rejects considerable
amounts of data per class. Nevertheless, if SVR can indeed predict
the relationship between low and high-resolution, then the regression
may be sufficient for less relevant points in a given class. Further-
more, through experimentation, it turns out that only a few classes at
any given test point are chosen and used for reconstruction the ma-
jority of the time. The implication from this is that for the test point
xtest, by multiplying Pj|x(j|xtest) with gj(xtest) in (10), we would
maintain good accuracy by zeroing out test data that is irrelevant for
a particular class anyway, leaving reconstruction for those classes
which can accurately do so.

4. COMPONENT SUBSAMPLING AND
COLOR SUPERRESOLUTION

The extension to color images is examined in this section. Color
images are usually partitioned into three components. The simplest
prediction technique is independent component interpolation. There
are obvious disadvantages to this method, most notably the disregard
for inherent correlation between components. One readily available
remedy for this issue and those similar to it would be to use values
from all three components to produce an evenly proportioned fea-
ture representative of all three components. However, using 5 × 5
windows in 3 different spaces means 75 dimensions, and estimation
errors overcome whatever is gained by the added information.

Therefore, we need to maintain balance by trading off small fea-
ture vector size for a decent amount of quality information. As
it turns out, in terms of the human visual system (HVS), changes
in color Cr and Cb components are less detectable, and perceptual
changes in luminance seem more important. In fact, all MPEG com-
pression use a 4:2:0 resolution format, where luminance pixels out-
number either chrominance component by a factor of 4. Drawing
from this, many techniques that use RGB interpolation (including
[2]) weight the importance of each component by their average pro-
portion of luminance. Our proposed algorithm is more direct in
its approach and clusters luminance components only, disregarding
color altogether. The rationale behind this thinking is that for pur-
poses of image content recognition, particular objects may be tinted
differently when the underlying texture as well as the transition of
colors within the patch remain the same.

While clustering luminance components in x, color regressions
use a separate input z from a window of surrounding color compo-
nents (either Cb or Cr). It is here that SVR has distinct advantages
over the linear filtering used by most interpolation algorithms. By
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filtering edges, halos or odd-colored auras often appear along tex-
ture transitions and borders. This is due in part to the averaging
of pixel values, which smoothing linear filters have a tendency to do.
Because there exists a multitude of shades of colors between any two
chroma values, averaging often produces these unnatural and strange
colors. The proposed algorithm avoids these undesirable byproducts
that typically plague linear algorithms because the choice of train-
ing set often excludes these in-between values. The exclusion leaves
out the odd-looking colors by effecting texture transitions that occur
naturally in the image pairs of the training set.

5. RESULTS AND ANALYSIS

The SDP and QCQP problems in Sec. 2 have been verified in a previ-
ous work [5] using the cvx [10] Matlab toolbox. Image superresolu-
tion algorithms compute the QCQP and utilize the MOSEK toolbox
[11].

The algorithm was set up with D = 3 and U = 2, meaning
that ILR was 3 × 3 and IHR was 2 × 2. Luminance and chromi-
nance regression features come from windows of sizes 5 × 5 and
3 × 3, respectively. Thus, x ∈ R9×1, y ∈ R4×1, zLum ∈ R25×1,
zCr ∈ R9×1, and zCb ∈ R9×1. We ensure good generalization by
randomly selecting a test image that differs from a training set of 20
images. For fair comparison, the same training set is used for any
relevant learning algorithms involving a training set (most of which
can be seen at the website below) to which we compare our method.

Comparisons to new edge-directed interpolation (NEDI) [1] and
bicubic interpolation are shown qualitatively in Fig. 1. The proposed
method Fig. 1(d) offers more clarity than all the compared methods.
Imperfections in Fig. 1(c) could be a by-product of a 2 × 2, two
pass system in which [1] considers features and color independently.
Experimental results assert that joint consideration is advantageous
because optimization described by Sec. 2 results in a kernel with all
3 × 3 features for most classes. Additional images and comparisons
can be found at research pages on UCSD’s video processing website:
http://videoprocessing.ucsd.edu/˜karl/color_krs_sr

6. CONCLUSIONS

This work has proposed an approach to single image superresolu-
tion that successfully offers a stochastic framework involving two
learning techniques. In addition, the superresolution algorithm has
extended regressions to the color domain based on luminance classi-
fication and prevented the ill-effects of bleeding color into surround-
ing edge areas. The exploitation of the proposed statistical method
offers good numerical and visual results.
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