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Abstract— This paper presents an edge-directed image interpo-
lation algorithm. In the proposed algorithm, the edge directions
are implicitly estimated with a statistical-based approach. Con-
sequently, the local edge directions are represented by length-16
vectors, which are denoted as weight vectors. The weight vectors
are used to formulate geometric regularity constraint, which is
imposed on the interpolated image through the Markov Random
Field (MRF) model. Furthermore, the interpolation problem is
formulated as a Maximum A Posterior (MAP)-MRF problem
and, under the MAP-MRF framework, the desired interpolated
image corresponds to the minimal energy state of a two-
dimensional random field. Simulated Annealing method is used
to search for the minimal energy state from a reasonable large
state space. Simulation and comparison results show that the
proposed MRF model-based edge-directed interpolation method
produces edges with strong geometric regularity.

Index Terms— Image Interpolation, Markov Random Field,
Edge-directed

I. INTRODUCTION

Image interpolation is the process of producing high reso-

lution image from its low resolution counterpart. The conven-

tional image interpolation methods, such as bilinear, bicubic

and splines, typically produce images with blur edges as a

result of assuming continuity of the pixel intensity field, which

is unrealistic. Spatial adaptive interpolation methods [1], [2],

which adjust the interpolation coefficients according to the

local pixel intensity properties, can be used to improve the

interpolation performance. Among various spatial adaptive

interpolation algorithms, interpolating according to local edge

directions is an important idea. This is because edges are

among most noticeable features in natural images. The visual

quality near edge areas affects the visual quality of the

overall interpolated image significantly. Interpolation along

ideal step edges is not difficult since accurate edge direction

information can be obtained explicitly from edge detectors

[3], [4]. However, edges in natural images appear as spatially

blurred edges due to sensor noises, focal blur, penumbral blur

and shading, etc [5]. When edges are blur or noisy, it is difficult

to explicitly specify the characteristics of edges, such as edge

width, exact positions and digital directions [5]. This makes

interpolation along natural edges difficult.

To avoid the difficulties with explicit edge-directed inter-

polation methods, implicit edge-directed interpolation meth-
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ods are proposed. In this class of methods, the edge direc-

tions are not explicitly extracted. However, the interpolation

is performed based on implicit edge direction information.

Our proposed MRF model-based edge-directed interpolation

method (MRF-EDI) is an implicit edge-directed interpolation

method. In MRF-EDI, the edge directions of an edge pixel are

indicated by the continuity strengths in all directions. Instead

of labeling each direction as either edge or non-edge direction,

we measure the continuity strength in each direction with a

rational number between 0 and 1. Large values indicate strong

continuities (along edge directions) while small values indicate

weak continuities (across edge directions). These values are

derived from the statistical properties of intensity variations

within a local window. The relative continuity strengths of

all the directions are used as edge direction information to

formulate the geometric regularity (GR) spatial constraint,

which can be summarized as smoothness along edge directions

and sharpness across edge directions.

Another implicit edge-directed interpolation method that the

proposed method is compared to is the New Edge-Directed

Interpolation method (NEDI) [6]. In NEDI, the edge direction

information is extracted as a low resolution covariance matrix

and the interpolation of a high resolution covariance matrix

from its low resolution counterpart is required. The edge direc-

tion information is reserved during the interpolation process.

Compared to the conventional bilinear, bicubic and spline

interpolation methods, the NEDI method shows impressive

improvements of interpolated edges, which are less blur and

smoother along edge directions. However, as a result of the fact

that the interpolation of a pixel has been limited within its four

nearest diagonal neighbors, the sharpness of the interpolated

edges is not comparable to that of the original edges. Another

limitation of this algorithm is that it has difficulties in dealing

with textures. Typically, spurious minor edges are observed

in the interpolated texture areas, which make the interpolated

images look unnatural. As a result of losing fidelity of the

original image, the interpolated image in the NEDI method

suffers significant PSNR level decrease compared to the con-

ventional methods. In this paper, we propose the MRF-EDI

method to improve edges’ geometric regularity further while

maintaining the fidelity of the original image.

Review of MRF: Since MRF model is used in the MRF-

EDI method, it is reviewed briefly here. MRF model provides

a model to impose spatial constraints on the processed images

and it proves to be a robust and accurate model for natural
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images [7]–[9]. The spatial constraint is imposed through the

formulation of the energy function U(ω) in Gibbs distribution,

p(ω) = 1
Z exp{−U(ω)

T }, where ω represents one configuration,

T is a global control parameter of the convergent property and

Z is a normalizing factor. Under the Maximum A Posterior

(MAP)-MRF framework [10], the most desired configuration

is the one that maximizes the probability p(ω) and, equiva-

lently, minimizes the energy function U(ω).
The general modeling steps of spatial constraints in an

MRF model are as follows. A neighborhood structure Ni,j ,

which contains neighboring pixels of site (i, j) ((i, j) is not

included), is first defined. Then a clique is defined on the

neighborhood structure Ni,j . A set of pixel sites c in Ni,j

is a clique if all pairs of sites in c are neighbors. Lastly, a

function Vc called potential function defines the interactions

of pixel sites in clique c. Spatial constraints can be imposed

on the processed image through the formulation of function

Vc. The potential function is related to the energy function as

U(ω) =
∑

c∈C Vc(ω).
Paper organization: The organization of the remaining of

this paper is as follows. The implicit edge direction estimation

algorithm is presented in Section II and the formulation of the

GR spatial constraint is presented in Section III. Simulation

results are presented and compared to other interpolation

methods in Section IV. Section V concludes the paper.

II. EDGE DIRECTION ESTIMATION

Suppose the high resolution image H comes directly from

the low resolution image L as H(2i−1, 2j−1) = L(i, j). For

each pixel site in H , we consider sixteen discrete directions as

indexed in Fig. 1(a). Each direction is represented by a vector
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Fig. 1: (a) The 7 × 7 neighborhood structure. Dots in black

denote neighbor pixels. (b) The sixteen considered cliques.

V = (vr, vc), which is the distance between the center pixel

and its closest neighboring pixel in the corresponding direc-

tion. For example, direction 2 is represented by vector (−1, 3).
Each pixel in image H can be represented by one of the four

coordinates, H(2i − 1, 2j − 1),H(2i − 1, 2j),H(2i, 2j − 1)
and H(2i, 2j). We take pixel site H(2i − 1, 2j − 1) as an

example to present the calculation of the weights. Weights for

other pixel sites can be obtained in a similar manner.

First a size 9×9 window W , which is centered at pixel site

H(2i−1, 2j−1), is formed from the high resolution image H
and weights are learned from pixel intensity variations in the

window W . Before calculating the pixel intensity variations,

we temporarily interpolate the unavailable pixels in W by the

bilinear method. This temporary interpolation is necessary.

Otherwise, the intensity variations for some directions (e.g.,

directions 2, 6, 8, 10,12 and 16) are too few for the estimation

of the statistical parameters. On the other hand, although

bilinear interpolation blurs the original edges, edge directions

are reserved during the interpolation.

When all pixels in W are available, the pixel intensity vari-

ations in all sixteen directions are calculated. Consequently,

an intensity variation set for each direction is obtained as

ΔI(vr,vc) = {H(2(i + k) − 1, 2(j + q) − 1) −
H(2(i + k) − 1 + vr, 2(j + q) − 1 + vc)},
−1 or − 2 ≤ k, q ≤ 1 or 2, (1)

where the exact range of k, q are determined by satisfying

the condition that both H(2(i + k) − 1, 2(j + q) − 1) and

H(2(i + k) − 1 + vr, 2(j + q) − 1 + vc) are in window W .

Let μ and σ2 represent the mean and variance of

ΔI(vr,vc), respectively, the weight for the discrete direction

(vr, vc) is defined as w = 1/log2(σ2 + μ2), which can be

interpreted as follows. The intensity variation samples that

are obtained through (1) can be regarded as a short time

realization of a wide sense stationary random process. The

auto-correlation function R(t) at t = 0 is used to represent the

process and σ2 + μ2 is the estimation for R(0). The inverse

operation is introduced so that weights are proportional to

continuity strengths. The logarithm operation is used to keep

all the sixteen weights of a pixel site in the same order of

magnitudes. Otherwise, the weights decrease too quickly with

respect to R(0).
It can be concluded that the only case when the weight is

significant is the one that both variance σ2 and mean μ are

small. This corresponds to cases where the directions are along

edges. Consequently, the edge direction information of a pixel

is indicated by a length-16 vector. Relatively large weights

indicate relatively strong continuity.

III. MRF MODEL-BASED APPROACH TO IMPROVE EDGES’

GEOMETRIC REGULARITY

This section discusses the formulation of the GR spatial

constraint. The weights that are derived from Section II are

incorporated in the constraint.

As reviewed in the introduction section, spatial constraints

are imposed through the formulation of potential functions.

The potential function in the proposed method is defined as

Vc(ΔIk) = wk(−γe−
ΔI2

k
γ + γ), (2)

where wk represents the weight in the kth discrete direction.

Its calculation follows steps presented in Section II. ΔIk

represents the intensity variation in the kth discrete direction,

which is

ΔIk =
1
2
(|I(i + vr, j + vc) − I(i, j)| +
|I(i, j) − I(i − vr, j − vc)|), (3)
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where (vr, vc) denotes the kth discrete direction of pixel site

(i, j). The neighborhood structure and cliques that are associ-

ated with the potential function (2) are shown in Fig. 1(a) and

(b), respectively. The 48-pixel (7 × 7) neighborhood structure

enables sixteen discrete edge directions. Sixteen three-pixel

cliques are considered, one for each discrete direction.

The potential function (2) is obtained from a prototype

function g(η) = −γe−
η2

γ , which is shown to be able to

incorporate discontinuity-adaptive smoothness constraint in

one-dimensional case [9]. Eq.(2) is a weighted extension of the

prototype function. Potentials of all the sixteen directions are

used to calculate the energy of the whole interpolated image.

The GR spatial constraint will suppress high potentials along

edge directions and reserve high potentials across edge direc-

tions. High potentials across edge directions might represent

sharpness of edges.

The parameter γ in (2) is learned from the low resolution

image. Its calculation can be summarized in the following two

steps.

• Step 1: Intensity variations in the horizontal direction are

calculated. |ΔIh| denotes the data set, consisting of the

magnitudes of the intensity variations and |ΔIp| denotes

samples, of which the magnitudes are among the top 10%

of data set |ΔIh|.
• Step 2: Assume that |ΔIp| represents significant dis-

continuity features in the image and let ΔIt represent

the minimal magnitude in set |ΔIp|, parameter γ is

determined by relating a close-bound measure score to

the intensity variation ΔIt, for example,

−γe−
ΔI2

t
γ + γ = .99γ. (4)

After γ is obtained from (4), Simulated Annealing method

[7] is used to search for the minimal energy state on the state

space H . Note that the size of state space H can be large.

Pixels in natural images can have any integer values between

0 and 255. Thus for an M × N high resolution image, the

size of the realization space is 256
3
4×M×N , which precludes

any direct search methods. In order to lower the computational

complexity, the following two strategies are proposed.

1) Candidate sets: A candidate set for each pixel to be

interpolated is proposed. With the proposed candidate set, each

pixel to be interpolated can only have values from its candidate

set. Thus the size of the state space that the minimal energy

state is searched from reduces significantly. The candidate set

is proposed based on the low resolution image and, basically,

one candidate for each of the sixteen directions is proposed.

If any two of the sixteen candidates are the same, only one of

them is taken into the candidate set. Thus, plus one bicubic

interpolation candidate, each pixel site will have at most

seventeen candidates. The size of the state space H is reduced

to a reasonable size.

Consider pixel site (2i − 1, 2j) as an example to show

the formulation of its candidate set. As shown in Fig. 2(a),

centered at the pixel site (2i − 1, 2j), a 7 × 7 window is

formed in the high resolution image H . The candidates are

proposed from pixels in this window. In discrete directions 1,

4, 7, 11 & 14, the two closest neighboring pixels of the center

pixel are available and the average of the two neighboring

pixels in the same direction is taken as one candidate pixel.

As for the other directions, no closest neighboring pixels are

available. In those cases, the pixels at the intersecting points

(intersection of the direction and the central 4 × 2 square)

are interpolated and their average is used as a candidate

pixel. For example, direction 8 intersects the central square

at points A and B. Pixel values at point A and B are first

interpolated as A = 1
8I(2i − 3, 2j − 1) + 7

8I(2i − 3, 2j + 1)
and B = 7

8I(2i + 1, 2j − 1) + 1
8I(2i + 1, 2j + 1), and then

their average is used as a candidate pixel.

Proposing the candidates in a 7 × 7 local area is risky

since 7 × 7 is relatively large. High frequency noises could

be introduced easily if the intensity continuity of neighboring

pixels is not maintained. In the proposed MRF-EDI method,

the possible high frequency noises are suppressed efficiently

by the GR spatial constraint.

2) Discrimination between edge and non-edge pixels:
To lower the complexity, only edge pixels are optimized

iteratively while non-edge pixels are interpolated using deter-

ministic interpolation methods, for example, bicubic. A pixel is

identified as an edge pixel if only its two closest neighboring

pixels in its strongest continuity direction (indicated by the

largest weight) have their strongest continuities in similar

directions. For example, if the strongest continuity of the

pixel site being checked happens on direction d, its two

closest neighboring pixels in direction d have to have their

strongest continuities in directions d or d ± 1 in order for

this pixel to be declared as an edge pixel. Fig. 2(b)shows

the identified edge pixels (in brightest intensity). It can be

observed that major edges in the images are identified as edge

pixels and optimized iteratively. Smooth or texture areas are

not processed iteratively. The geometric regularity of major

edges is improved iteratively during the iteration.

3) Single-Pass Implementation: Adopting the one-pass

algorithm in [11], we designed a single-pass implementation

to replace the iterative optimization. The details are as follows.

The low resolution image is initially interpolated using a

convention method. Then for each edge pixel, the single-

pixel related energy of each candidate is calculated and the

one that has the minimal single-pixel related energy is the

final output. Although no iteration is required in the single-

pass implementation, its performance is almost as well as the

iterative optimization. The main reason is that the initial state

is very close to the global optimal state.

IV. SIMULATION RESULTS

The parameter settings of the simulation are as follows. The

low resolution images are obtained by directly downsampling

the original images with a factor of two in both row and

column dimensions. In the implementation of the proposed

MRF-EDI method, the parameters are set as follows. The

size of the local data window W is 9 × 9, in which the

data is used to calculate weights of the sixteen discrete
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(a) Candidate set for pixel site (2i −
1, 2j).

(b) Edge pixel map

Fig. 2: Circles represent pixels directly from the low resolution

images.

(a) Original (b) MRF-EDI (33.92 dB)

(c) NEDI (33.50 dB) (d) Bilinear (32.36 dB)

Fig. 3: 4× interpolation of “Foreman”.

directions. The original value T is set as T0 = 50. The

parameters are set empirically and single pass implementa-

tion is used. Comparison results are shown in Fig. 3 and

the local area zoom-in comparisons are shown in Fig. 4.

One can observe that the major edges interpolated by the

proposed MRF-EDI method are sharpest. More simulation re-

sults are available at http://videoprocessing.ucsd.
edu/˜minli/interpolationdemo.htm.

V. CONCLUSIONS

An implicit edge-directed interpolation algorithm for natural

images is proposed in this paper. In this method, the inter-

polated image is modeled as an MRF and the most desired

interpolated image is related to the minimal energy state of

a two-dimensional random field. Edge direction information

is incorporated in the formulation of the energy function in

(a) Original (b) MRF-EDI

(c) NEDI (d) Bilinear

Fig. 4: Zoom-in comparison.

the MRF model. Consequently, energy that is along the edge

direction is strongly suppressed to achieve smoothness while

energy that is across the edge direction is much less suppressed

to maintain the sharpness of the edge. The interpolated edges

have strong geometric regularity.
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