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ABSTRACT

We develop a computationally ef cient algorithm for the prob-
lem of anisotropic smoothing in images, i.e., smoothing an
image along its directional elds. Whereas similar problems
are often posed and solved as PDE problems in the literature,
we formulate the problem as a convex programming prob-
lem. We present ef cient implementations of interior-point
algorithms for solving large instances of this problem.

Index Terms— Optimization methods, quadratic program-
ming, image processing

1. INTRODUCTION

The problem of smoothing an image mainly along its direc-
tional elds has been studied by several authors (e.g., [1, 2]),
using a non-linear diffusion process based on a partial dif-
ferential equation (PDE). An interesting application of these
ideas is the inpainting problem, where missing parts of an
image can be reconstructed, e.g., based on the surrounding
directional elds.

In this correspondence we revisit the anisotropic smooth-
ing problem, taking a new convex programming approach.
One of the general advantages of formulating the problem in
a convex programming setting is that this leads to straightfor-
ward implementations; in fact, many PDE based approaches
formulate a discrete convex approximation, which is subse-
quently solved, e.g., total variation based image processing
algorithms (see [3] and references therein). Other PDE based
problems are not as easily approximated by convex problems,
which makes implementation dif cult. The approach we sug-
gest here directly exploits convexity of the discrete problem
instead, and cannot be interpreted as a convex approximation
of the problems in [1, 2]; instead it should be considered as
an alternative approach based on convex programming.

Although convex programming problems are, in princi-
ple, readily solved using, e.g., modern interior-point algo-
rithms [4], limited progress has been made applying these

techniques to image processing problems, where the large di-
mensions renders a typical implementation intractable. A no-
table exception is the second-order cone programming (SOCP)
formulation of total variation based denoising in [5], where
the authors demonstrate the advantages of implementing the
large-scale methods directly using modern convex program-
ming instead of usual smooth approximations.

Our approach and contribution is similar in spirit. We rst
demonstrate in Sec. 2 how the anisotropic smoothing prob-
lem can be written as a convex large-scale quadratically con-
strained quadratic programming (QCQP) problem. This prob-
lem has both sparse and non-sparse structure, which we ex-
ploit in the large-scale implementations of Sec. 3. With this
implementation we can solve problems with more than 10 5

variables in a few minutes; we give such large-scale examples
for ngerprint enhancement in Sec. 4. A key to this success
is using iterative methods for solving the KKT systems in an
interior-point algorithm.

2. CONVEX PROBLEM FORMULATION

In this section we show how smoothing along the directional
elds of an image can be achieved by solving a convex opti-

mization problem. Estimation of the directional elds (e.g.,
[6]) or anisotropic diffusion (e.g., [1, 2]) is achieve using lo-
cal averaging of the gradient or directional elds by averaging
the structure tensors (see below) in local neighborhoods.

Let X denote a discrete m×n grey-scale image with pix-
els Xij , and let x = vec(X). We approximate the gradient at
(i, j) by a nite difference,

∇Xij =
(

Xi+1,j −Xi,j

Xi,j+1 −Xi,j

)
= BT

ijx (1)

with the mn× 2 matrix

Bij =
(

ei+1+(j−1)m − ei+(j−1)m ei+jm − ei+(j−1)m

)
.

For ease of notation we assume that the image is periodically
extended in both dimensions, so that (1) is valid for 1 ≤ i ≤
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m, 1 ≤ j ≤ n, see e.g., [7] for different boundary conditions
in image processing.

The structure tensor of the gradients at (i, j) averaged in
a neighborhood is then

Tij(X) =
∑

(k,l)∈NQ(i,j)

∇Xkl∇XT
kl (2)

where NQ(i, j) = {(k, l) | ‖(i − k, j − l)‖∞ ≤ Q} de nes
the neighborhood. Note that the structure tensor encodes di-
rections without orientation, so gradients of opposite direc-
tion are added coherently. The largest eigenvector of T ij(X)
gives the average gradient direction, and the smallest eigen-
vector gives the local direction of ow (see, e.g., [6]).

The main idea of anisotropic smoothing is to encourage
the gradients of the smoothed image to be aligned with the
largest eigenvector of the structure tensors Tij(X). If we par-
tition a structure tensor as

T =
[
T11 T12

T12 T22

]

we can de ne the inertia tensor as

T ′ =
[
T22 −T12

−T12 T11

]
,

i.e., T ′ = αT −1 with α = det(T ) > 0 if T is non-singular
(see [8] for a discussion of structure and inertia tensors). Note
that T ′ is sometimes referred to as the adjugate of T . Obvi-
ously, the largest eigenvector of T corresponds to the smallest
eigenvector of T ′.

Assume next that the local structure tensors Tij(Y ) of a
noisy image Y are estimated using (2) and subsequently con-
verted to inertia tensors T ′ij(Y ). Anisotropic smoothing can
be achieved by attempting to make the gradients ∇X ij or-
thogonal to the local directional elds characterized by the
smallest eigenvectors of T ′ij(Y ), i.e., we can pose the prob-
lem

minimize
∑

ij(∇Xij)TT ′ij(Y )∇Xij

subject to ‖X − Y ‖2F ≤ δ

which is a convex QCQP [9]. The constraint removes the
trivial zero solution and forces the estimate to not depart too
much from the noisy observation Y . Such a constraint is typi-
cal in, e.g., total variation based image processing; see [3] and
references therein.

One application of anisotropic smoothing is enhancement
and inpainting of ngerprint images ([2, 3]). As ngerprints
are ideally sparse and binary, we can add an additional � 1-
norm regularization term to emphasize this property of X . In
Sec. 3 we will see how such a regularization can be added
at no additional complexity. Thus, with x = vec(X) and
y = vec(Y ), the problem we propose to solve is

minimize 1
2xT Px + γ‖x‖1

subject to 1
2‖x− y‖22 ≤ δ

(3)

where P =
∑

ij BijT ′ij(Y )BT
ij . The dimension of P is mn

which is often very large, but P is extremely sparse (see Fig. 2)
which we exploit in the following implementation.
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Fig. 1. Sparsity pattern of P for m = 10, n = 7.

3. LARGE-SCALE IMPLEMENTATION

We consider ef cient large-scale implementations of (3) based
on a primal-dual interior-point algorithm. The implementa-
tion is standard and covered in several texts (e.g., [4]), so we
just outline the basic steps.

At the heart of any interior-point algorithm is solving the
KKT system for a differentiable problem. Thus we rst rewrite
(3) in epigraph form as

minimize 1
2xT Px + γ1T t

subject to −t � x � t
1
2‖x− y‖22 ≤ δ,

(4)

where 1 denotes the vector of all ones, and � denotes “ele-
mentwise ≤”. The KKT system arises from linearizing rst-
order optimality conditions for (4) after introducing slack-
variables for the inequalities. The slack-variables can imme-
diately be eliminated from the KKT system, and for brevity
we skip this initial step. The KKT system we solve is then⎡
⎢⎢⎢⎢⎣

P + zI 0 x− y I −I
0 0 0 −I −I

(x− y)T 0 −d 0 0
I −I 0 −Du 0
−I −I 0 0 −Dl

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Δx
Δt
Δz
Δzu

Δzl

⎤
⎥⎥⎥⎥⎦ = r

where the scalar d > 0 and the positive de nite diagonal scal-
ing matrices Du and Dl are given matrices that depend on the
variables x, t and z, and arise from eliminating the slack vari-
ables, and r is a residual vector which is zero at the optimal
point.
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We next eliminate Δt, Δzu and Δzl to get a reduced KKT
system [

H x− y
(x− y)T −d

] [
Δx
Δz

]
=

[
r̃1

r̃2

]
(5)

where H = P + zI + Du − D2
uD−1

l . The sparse symmet-
ric inde nite system (5) can be solved using sparse LU or
LDLT factorizations, but the amount of ll-in (using standard
reorderings) makes this approach intractable for large images
(say, when mn > 105). A more viable approach is then to
solve (5) using an iterative method, e.g., MINRES [10] which
has small memory requirements.

If we resort to iterative methods, we can also further elim-
inate Δz and solve the symmetric positive de nite system

(H + d−1(x− y)(x− y)T )Δx = r̃1 + d−1(x− y)r̃2. (6)

Since the coef cient matrix in (6) is the sum of a sparse matrix
and a rank one matrix we can solve (6) ef ciently using the
method of conjugate gradients.

A critical component of iterative methods is ef cient pre-
conditioners. A cheap preconditioner with linear complexity,
that works very well for all our tests is to solve

Ĥ Δx = r̃1 + d−1(x− y)r̃2. (7)

where Ĥ is a tridiagonal approximation of H , i.e., we solve
(6) ignoring the rank-one term as well as elements outside the
tridiagonal band. We also experimented with a preconditioner
that directly solved (6) using the same tridiagonal approxima-
tion using the matrix inversion lemma, but the best results
were obtained solving (7). Other preconditioners for struc-
tured matrices can be found in [11].

4. EXAMPLES

To illustrate our algorithm we use a low-quality ngerprint
from the database in [12]; see Fig. 3a. Similar to the non-
linear diffusion processes in, e.g., [1, 2, 3] we apply the algo-
rithm repeatedly on the enhanced image, i.e., we rst compute
an enhanced image of the noisy observation Y , and we then
rerun the algorithm using the enhanced image as input Y , et
cetera.

The dimension of this image is 480 × 300, i.e., we have
sparse QCQP with 144.000 variables. We implemented the
algorithm (4) using the optimization tool [13], and the code
for generating the plots in Fig. 3 is included in the example
section of [13]. The gure clearly illustrates the effect of both
the anisotropic smoothing, as well as the sparsity encouraged
by the �1 regularization term. This gives rise to a thinning
effect, which is desirable in algorithms for ngerprint recog-
nition [12].

We solved the problems using the CG algorithm with the
tridiagonal preconditioner in (7) to a tolerance level of 10−5

for the residual norm, which is a fairly high accuracy for such
large-scale problems. For this tolerance level, the images in
Fig. 3 took 404, 228, 223, and 181 seconds to compute, re-
spectively, on a standard AMD Opteron 2.0GHz PC, which is
quite remarkable considering the size of the problem. We ob-
served that solving (5) using MINRES was in general slower
than solving (6) using CG.

For comparison we also solved the problems without a
preconditioner, to a lower accuracy of 10−3. Fig. 2 shows the
number of Newton steps and conjugate gradient iterations in
the algorithm with and without a preconditioner. We observe
the fundamental problem with the conjugate gradient method,
namely that close to the optimal solution the KKT system be-
comes increasingly ill-conditioned, and without an ef cient
preconditioner convergence of the CG algorithm slows down
signi cantly.
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Fig. 2. Number of CG iterations at different Newton itera-
tions for the examples in Fig. 3; solid lines for the tridiagonal
preconditioner, and dashed lines without a preconditioner.

5. CONCLUSIONS

We formulated a discrete anisotropic smoothing problem with
an �1 regularization term as a convexquadratically constrained
quadratic programming problem (QCQP). Similar problems
have previously been derived from partial differential equa-
tions (PDEs) combined with non-linear diffusion processes in
the literature.

In principle, a convex programming approach has the ad-
vantage of offering a straightforward implementation and the
ability to add additional heuristic constraints and regulariza-
tion terms, but in practice the large dimensions involved with
image processing make implementation issues non-trivial. So
far interior-point algorithms have only scarcely been applied
to problems in image processing, but with the large-scale im-
plementations in this correspondence we hope to demonstrate
that such an approach is indeed tractable.
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Fig. 3. Example of anisotropic smoothing of a low-quality ngerprint image. From left to right: noisy original, and images
after 1, 2 and 3 iterations.

Fig. 4. Subregions of the images in Fig. 3.
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