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ABSTRACT

Recreating the temporal illumination variations of natural scenes

has great potential for realistic synthesis of video sequences.
In this paper, we present a 3D (model-based) approach that
achieves this goal. The approach requires a training sequence
to learn the time-varying illumination models, which can then
be used for synthesis in another sequence. The motion and il-
lumination parameters in the training sequence are estimated
alternately by projecting onto appropriate basis functions of a
bilinear space defined in terms of the 3D surface normals of
the objects. The motion is represented in terms of 3D trans-
lation and rotation of the object centroid in the camera frame,
and the illumination is represented using a spherical harmon-
ics linear basis. We show video synthesis results using the
proposed approach.

Index Terms— Illumination, motion, 3D model, video
sequence

1. INTRODUCTION

Determination of the illumination conditions in a video se-
quence as a function of time has important applications in
object recognition, video summarization and video synthe-
sis. While many of the existing methods for estimating mo-
tion and shape of an object can handle significant changes
in the illumination conditions by compensating for the vari-
ations, there do not exist many methods that can recover the
time-varying illumination conditions from video sequences of
moving objects. In this paper, we propose a 3D approach for
learning the illumination conditions of video sequences. The
recovered parameters are then used to synthesize new videos
under the lighting conditions of the original ones.

Most of the advanced methods for modeling lighting have
concentrated on the study of single images, e.g. shape from
shading , photometric stereo , illumination cone . In one of the
most important results on illumination modeling, Basri and
Jacobs [1] and Ramamoorthi and Hanrahan [2], indepen-
dently derived a 9D spherical harmonics based linear repre-
sentation of the images produced by a Lambertian object with
attached shadows. However, there has been little work on in-
tegrating the advances in illumination modeling with meth-
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ods for shape and motion estimation. Some exceptions are
[3, 4, 5]. Integrating illumination models with motion and
shape would allow us to compute all the three together. This
is different from applying image-based approaches like [1, 2]
to every frame of a video sequence separately, becasue the
image-based approaches would require estimating the pose of
the object as it moves, which, in turn, would be made diffi-
cult by the fact that lighting is changing. Integrating motion
and shape with the illumination models would overcome this
problem by providing a representation of the image appear-
ance in terms of all these three parameters.

In this paper, we propose a 3D approach for estimation
of the time-varying illumination conditions from video se-
quences, while simultaneously tracking the objects in the video.
It allows tracking, and hence illumination estimation, under
large changes of pose. The method is built upon the approach
in [4], where the authors showed that the set of all Lamber-
tian reflectance functions of a moving object, at any position,
illuminated by arbitrarily distant light sources, lies close to
a bilinear subspace consisting of nine illumination variables
and six motion variables. The lighting can consist of combi-
nations of point and extended sources, and can change slowly
or suddenly. This allows us to learn the illumination varia-
tions of natural scenes in indoor and outdoor environments.
We demonstrate the ability of this method in learning the illu-
mination variations in videos of natural scenes and synthesis
of new sequences.

The rest of the paper is organized as follows. Section
2 presents an overview of the joint illumination and motion
models for video sequences followed by the algorithm for
learning the motion and illumination parameters from video
using this model. In Section 3, video synthesis results with
two approaches are presented. Section 4 concludes the paper
and highlights future work.

2. INTEGRATING ILLUMINATION, 3D MOTION
AND SHAPE MODELS IN VIDEO

2.1. Bilinear Model of the Motion and Illumination

In this section, we present the fundamental result on estimat-
ing the illumination and 3D motion parameters. Recent stud-
ies has shown that, for a fixed Lambertian object, the set of re-
flectance images under distant lighting without cast shadows
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can be approximated by a linear combination of nine basis im-
ages, defined using spherical harmonics [1, 2]. Several papers
have shown the suitability of this model for faces [1, 6].

In [4], the motion was taken into the consideration and it
was shown that for moving objects it is possible to approxi-
mate the sequence of images by a bilinear subspace. It was
proved that if the motion of the object from time ¢; to new
time instance ¢, is small, then upto a first order approxima-
tion, the reflectance image I(x,y) at to can be expressed as

[4]: .
I(m,y,t) = > Y 12bij(npy), (1)
i=0 j=—i
where
bij (1’113/2) = bLJ (npl) + AT + BQ. (2)

s
/
1 fimm

Optical Center
q x

Thanination

Reference
frame

Fig. 1. Pictorial representation showing the motion of the ob-
ject and its projection (reproduced from [4]).

In the above equations, b;;(np; ) and lsz are the basis im-
ages and illumination coefficients after motion, while b;; (np, )
are the original basis images before motion. A and B contain
the structure and camera intrinsic parameters, and are func-
tions of pixel index (x,y). For one pixel (z,y), both A and
B are N; by 3 matrices, where N; ~ 9 for Lambertian objects
with attached shadow. Please refer to [4] for the derivation of
(1,2) and explicit expression for A and B. Substituting (2)
into (1), we see that the new image spans a bilinear space of
six motion and approximately nine illumination variables (for
Lambertian objects with attached shadows). The basic result
is valid for general illumination conditions, but require con-
sideration of higher order spherical harmonics. In can also be
used with other basis functions (e.g., wavelets [7, 8]) so long
as the change of the bases is approximately linear in the 3D
rigid motion terms.

When the illumination changes gradually, we can use the
Taylor series to approximate the illumination coefficients as
lsz = lfjl + Al;;. Ignoring the higher order terms, the bilinear
space now becomes a combination of two linear subspaces, as

2 7
I(z,y.t) + Y Y IHAT + BQ)

i=0 j=—i

2 i
+ Z Z Al”b” (1’11::1 )

i=0 j=—i

I(.Z‘,y,tg) =

3)

If the illumination does not change from ¢; to ¢2 (often a valid
assumption for a short interval of time), the new image at ¢,
spans a linear space of the motion variables.

We can express the result in (1) succinctly using tensor
notation as

I:<B+CX2<£>> x11,

where x,, is called the mode-n product [9] and 1 € RN,
is the vector of I;; components. [V; is the dimension of the
illumination basis. The mode-n product of a tensor A €
RIXI2X X Inx. . XIN by g yector V. € R denoted by
Ax, V,isthe [; x I x ... x 1 x ...x Iy tensor

(A X V)it in i lipain = g @iy i rininr .. in Vin-
in

“4)

For each pixel (p, ¢) in the image, Cripg =[ A B ] of size
N;x6. Thus for an image of size M x N,C is Ny x6x M x N.
B is a sub-tensor of dimension IV; x 1 x M x N, comprising
the basis images b;;(np, ), and Z is a sub-tensor of dimension
1 x 1 x M x N, representing the image. 1 is still the IV; x 1
vector of the illumination coefficients.

2.2. Learning Joint Illumination and Motion Models from
Video

Equation (1) provides us an expression relating the reflectance
image I;, with new illumination coefficients lfj and motion
variables T, €2, which lead to a method for estimating 3D mo-
tion and illumination as:

[
arg min [|7;, — > libij(npy)|?

i=0,1,2 j=—1i

,T, )

i

+a[ml[?

. T
= arg{%l%”fh - <Bt1 +Cy, X2 < Q )) x1 1|12

+o||m|?

where 2 denotes an estimate of x. Since the motion between
consecutive frames is small, but illumination can change sud-
denly, we add a regularization term to the above cost function.
T
Q

Since the image I, lies approximately in a bilinear space
of illumination and motion variables (ignoring the regular-
ization term for now), such a minimization problem can be
achieved by alternately estimating the motion and illumina-
tion parameters by projecting the video sequence onto the ap-
propriate basis functions derived from the bilinear space. This
process guarantees convergence to a local minimum [10]. As-
suming that we have tracked the sequence upto some frame
for which we can estimate the motion (hence, pose) and il-
lumination, we calculate the basis images, b;;, at the current

It is of the form «||m]||?, where m =
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pose, and write it in tensor form B. Unfolding1 B and the im-
age 7 along the first dimension, [9] which is the illumination
dimension, the image can be represented as:
10 = Byl (6)
This is a least square problem, and the illumination 1 can be
estimated as:
1= (BB(1)) "' BuyZy. )
Keeping the illumination coefficients fixed, the bilinear space
in equations (1) and (2) becomes a linear subspace, i.e.,

I_BX11+QX2<£>,

where G = C x; 1. Similarly, unfolding all the tensors along
the second dimension, which is the motion dimension, and
adding the effect of the regularization term, the cost function
becomes:

®)

. . T
(T,Q2) = argr%{g1||f<8xll+g><2<g>>”2

+afjm|? ©)

Substituting the definition of regularization term m into
equation (9), it becomes a least square problem, and T and 2
can be estimated as:

i

(&
where I is an identity matrix of dimension 6 x 6. The above
procedure for estimation of the motion should proceed in an
iterative manner, since 13 and C are functions of the motion
parameters. This should continue until the projection error
does not decrease further. This process of alternate minimiza-
tion leads to the local minimum of the cost function (which is
quadratic in motion and illumination variables) at each time
step. This can be repeated for each subsequent frame. We
now describe the algorithm formally.

Algorithm for estimating illumination from a video se-
quence: Consider a sequence of image frames I;,t =0, ..., N—
1.

Initialization: Take one image of the object from the video
sequence, register the 3D model onto this frame and map the
texture onto the 3D model. Calculate the tensor of the basis
images By at this pose. Use (7) to estimate the illumination

-1
) = (GGl + 1) G~ Bxi 1. (10)

IAssume an Nth-order tensor A € Cl1xI2X...XIN  The matrix
unfolding A,y € ClnXIny1lny2. INI1I2--In—1) contains the ele-
ment a;q4,...i5 at the position with row number 4, and column num-
ber equal to (int1 — 1)Ipy2lnys...IN[1I2... In—1 + (int2 —
DiIngslnta.. . INIIz .. . In_1+-- -+ (in—1)I112.. . In_1+ (i1 —
DIgls...In—1 4+ +in_1.

coefficients. Now, assume that we know the motion and illu-
mination estimates for frame ¢, i.e., T, ; and 1,.
e Step 1. Calculate the tensor form of the bilinear basis im-
ages B3; at the current pose using (2). Use (10) to estimate the
new pose from the estimated motion. . R
e Step 2. Assume illumination does not change, i.e. 1,41 = ;.
Compute the motion m by minimizing the difference between
an input frame and the rendered frame ||Z; 11 — (B: + Ci X2
( Tia
Qi
o Step 3. Using the new pose estimate, re-estimate the illumi-
nation using (7). Repeat Steps 1 and 2 with the new estimated
1; 41 for that input frame.
o Step 4. If the difference error between the input frame and
the rendered frame can be reduced lower than an acceptable
threshold, go to Step 5. Otherwise, perform a local optimiza-
tion (using any gradient descent method) initializing with the
estimates of motion and illumination.
e Step 5. Sett=t+ 1. Repeat Steps 1, 2, 3 and 4.
e Step 6. Continue till t=N - 1.

In many practical situations, the illumination changes slowly
within a sequence (e.g., cloud covering the sun). In this case,
we use the expression in (3) instead of (1,2) in the cost func-
tion (5) and estimate Al;;.

) ) X1 it+1 ||?, and estimate the new pose.

3. EXPERIMENTAL RESULTS
In this section, we show the results for synthesizing new video
sequences under the illumination conditions learned from the

original ones.

Training Sequence

Synthesis Sequences

-
3
y

Fig. 2. Face synthesis with the motion and illumination mod-
els learned from training sequence. Motion and illumination
are learned from the frames in the first row, and images in the
second row are synthesized with the motion and illumination
learned from the corresponding frames in the same column.

In Figures 3, we show examples of synthesizing a face
using learned illumination and motion models. Motion and
illumination are learned from the frames in the first and sec-
ond rows respectively, and images in the third row are synthe-
sized with the motion and illumination learned from the cor-
responding frames in the same column. This example shows
how we can decouple lighting and motion. Also note the
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Fig. 3. Another example of video synthesis with learned mo-
tion and illumination models. Motion and illumination are
learned from the first row and second row respectively, and
the corresponding frames in the third row are synthesized with
the learned motion and illumination parameters.

(a) Morning (c) Afternoon (f) Twilight
(h) Evening (j) Late night (1) Early morning

Fig. 4. Synthesis of a building with illumination models
learned from a natural outdoor scene. All the building frames
are synthesized with the illumination learned from the corre-
sponding frames on the top row. The illumination was learned
throughout the day by looking at a mountain which is shown
in the top row. Motion on the building is applied artificially.

effect of local illumination changes in the synthesized se-

quences, which would be difficult using purely image processing- o

based methods.

In another experiment, we observed a hill from our lab
over a 24 hour period. A portion of this scene was used to
learn the illumination model. There was no tracking involved
here as the scene was static. We then synthesized a building

on the campus using the learned illumination models for dif-
ferent times of the day. The motion was added artificially.
Examples of the synthesized images are shown in Figure 4.

4. CONCLUSIONS

In this paper, we presented a approach for estimating illu-
mination and motion simultaneously from a video sequence.
The proposed method uses spherical harmonics based illu-
mination representation, and allows us to learn time-varying
models of illumination. The models can be used for video
indexing and summarization as well as to recreate new ob-
jects of the same class under the illumination conditions in
the training sequences. We showed video relighting synthesis
results using this approach and analyzed its effectiveness on a
number of examples.
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