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ABSTRACT

Nonnegative Matrix Factorization (NMF) is a powerful
decomposition tool which has been used in several content
representation applications recently. However, there are some
difficulties in implementing NMF in on-line video applications.
This paper introduces an incremental NMF (INMF) without
deviating from conventional NMF'’s main objective function, which
is minimizing the reconstruction error. The proposed algorithm is
capable of modeling dynamic content of the video, thus controls
contribution of the subsequent observations to the NMF
representation properly. It is shown that the INMF preserves
additive, parts-based representation capability of the NMF with a
low computational load while offering dimension reduction.
Experimental results are given to compare the reconstruction
performances of the conventional and incremental NMF. In
addition, video scene change detection and dynamic video content
representation by INMF are investigated. Test results demonstrate
that the INMF can be used as a powerful on-line factorization
tool.

Index Terms— Non-negative matrix factorization, incremental
algorithms, video content representation.

1. INTRODUCTION

High dimensional data usually contain an important amount of
redundant components, which in fact may make the recognition
process of vital components harder. Therefore finding suitable
representations of data becomes extremely important in many data
analysis tasks. Non-negative Matrix Factorization (NMF) [1, 2, 3]
is one of these feature extraction/dimension reduction techniques,
which approximately factorizes data into a form of multiplication
of two non-negative matrices: matrix of basis vectors and encoding
matrix. One of the major differences of NMF compared to other
decomposition techniques is its constraint of non-negativity. This
constraint, by allowing only additive combinations of the basis
vectors, makes the NMF an intuitive, parts-based representation [1,
2, 3].

NMF has started to draw attentions with the work of Lee &
Seung’s [1] which alleged that NMF was successful in revealing
parts-based features of data. Although Lee and Seung showed that
non-negativity is a useful constraint for matrix factorization which
can learn parts of the data, other works, after claiming that NMF
cannot always guarantee parts-based representation in desired
level, tried to increase sparseness in NMF in order to improve its
localization capability [2, 3].

The NMF has started to find usage in many application areas
recently [2]. With its success in revealing latent features in data
and dimension reduction property, researchers started to use it
more frequently in different fields such as face and object

1-4244-1437-7/07/$20.00 ©2007 IEEE

Ir-113

recognition, biomedical applications, document clustering,
polyphonic music transcription, and color science. Even though the
types of the applications using the NMF may differ, the way they
employ it is quite the same.

The NMF, with its simple yet effective way to reduce
dimension and extract intuitive features of interest, is a potential
candidate for numerous video applications such as background
modeling in surveillance type of video, video content analysis, etc.
The conventional implementation of NMF is clearly not an on-line
process since the NMF algorithm is executed once on the data
matrix, constructed by the observed samples, and reaches to the
final factorization at convergence. Therefore performing NMF
continuously as each new frame arrives obviously will be
computationally costly. Thus, a need for adaptations in NMF
arises in order to make it available for on-line video applications.
Being influenced by the work [4] which offers an incremental
Principle Component Analysis (PCA), this paper introduces an
incremental NMF (INMF) algorithm without deviating from the
conventional NMF’s main objective function, which is minimizing
the reconstruction error.

The paper is organized as follows: In Section 2, after the
necessary mathematical definitions are given, difficulties with the
conventional NMF are discussed. In section 3, the incremental
NMEF is introduced. Finally, experimental results and conclusions
are given in section 4.

2. THE CONVENTIONAL NMF
2.1. Mathematical Definitions

The aim of the NMF, with rank » being a pre-defined value, is to
decompose the data matrix V€ R™™ into two matrices; which

are WeR™  also called as the mixing matrix, and H € R™™,
named as the encoding matrix [1, 2, 3].

V ~ WH (1)

The NMF is an iterative method which tries to find
approximate factorizations as it is formulated in Eq.(1). Therefore
the first step in factorization should be defining a cost function, so
that with the intention of minimizing it, appropriate update rules to
be used in each iteration could be defined for the elements of both
Wand H.

Different cost functions have been defined in the literature, but

because of its simplicity and effectiveness the squared
reconstruction error given in Eq.(2) is used in this work.
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The cost function F defined in Eq.(2) is a convex function of
W and H separately, but not of both at the same time. Therefore,
according to the gradient decent optimization, update rules which
are performed alternatively for the elements of matrices H and
W are given in Eq.(3) and Eq.(4), respectively [1, 2],
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where ¢ refers to the iteration number, 7' denotes the transpose,
a=12,...... Jyii=12,....n,andj=12,....m.

Note that Eq.(2) will be nonincreasing with respect to each
element in W and H under the update rules given in Eq.(3) and
Eq.(4) [1]. Initially elements of Wand H are chosen as random
nonnegative values.

2.2. Difficulties with the Conventional NMF

As a powerful technique which gives additive, parts-based
representations of data as well as offering dimension reduction at
the same time, the NMF with its previous success in various
content analysis work [2, 3], is a prospect to be used in video
applications, if it is described in an incremental form.

There are two striking points here about the conventional
NMF that could cause problems in the video applications. First of
all, as each new frame (sample) is taken, since the rank of the data
matrix V is increased by one, the rank of the encoding matrix H
is also increased, that yields a higher number of update operations
per iteration. Since the number of operations increase nonlinearly,
implementing the NMF repeatedly whenever a new frame arrives is
not a practical solution at all.

Another problem with the conventional NMF is the need for
original data matrix V in update operations, as it can be seen in
Eq.(3) and Eq.(4). Storing the whole data matrix V throughout the
whole process would require a significant amount of memory,
especially when the sample size is high.

Therefore, a proper algorithm which is able to update the
previous representations of video according to new-arrived frames
without causing a heavy workload should be derived. To overcome
these problems, we introduce an incremental NMF which is
explained in the next section.

3. THE INCREMENTAL NMF

Since it wouldn’t be very practical to carry out the
conventional NMF for the whole video matrix as each new frame
arrives, an incremental NMF representation which is appropriate to
the on-line video applications is derived. The idea behind the
incremental NMF (INMF) representation is altering the procedure
in a way that prior representations get updated with each new
frame.

In the incremental NMF, since each frame in V is reconstructed
by the help of the corresponding column of the encoding matrix, a
new frame automatically adds a new column to H. Moreover, in

each step, the mixing matrix W should be updated with the
contribution of new frames. To achieve this, first of all, effect of
the new frame (sample) on the cost function should be examined.
Let F defined in Eq.(2) be the cost function of m frames; thus
is denoted as F,, . Consequently, W and H shown in Eq.(2) refer
to W, and H,, , respectively. As the (m+1)" sample, v, arrives, a
new component shown as fi,.;, which is used to formulize the
reconstruction error of v, is added to the cost function as it is given
in Eq.(5), where v, refers the element of v and /, denotes a
component of the new column of the encoding matrix. In Eq.(5)
we introduce two new parameters: § and o. These parameters are
crucial in controlling the algorithm’s adaptability to dynamic
content changes. o determines the influence of the last sample into
the representation. B is introduced to limit the contribution of the
old samples as the number of samples increases. When the
condition (3 € (0,1)is satisfied, the effects of older frames decay
continuously, allowing the new samples to participate more.
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In order to obtain a NMF representation for the new data
nx(m+1) e
, we need to minimize the £, , by

minimizing both of its components. In other words, matrices
W,,and H,, should be updated in a way that reconstruction

matrix V € R

errors for the old m frames and the new frame should be minimized
that yields the best representation for all of the (m+1) frames.

The cost function £, defined in Eq.(5) is still a convex
function of W,, and H,, separately, thus we can use the gradient
descent algorithm to minimize the Eq.(5). Taking the derivative of
Eq.(5) with respect to %, , which corresponds to a™ component of

the new column h of the encoding matrix , gives Eq.(6).
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Thus, the update rule of gradient decent should be as in Eq.(7)
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where h'"" denotes the h at iteration (#+1) and the step size n, is
chosen as:
W
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Using Eq.(8) in Eq.(7) yields the update rule given in Eq.(9).
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Note that, the conventional NMF requires updating all the
elements of W and H, thus the number of operations increases
nonlinearly as the number of frames increases. However, in our
INMF derivation, there is no need to update the elements of
encoding matrix for the previous frames, but only the components
corresponding to the new frame are updated. Therefore at each
iteration ¢, the number of elements to be updated and the number of
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operations remain constant. Furthermore, the INMF updating rule
does not require the original data matrix V, thus the INMF
eliminates the need of storing whole video through the process.

On the other hand, derivative of Eq.(5) with respect to ¥,
yields Eq.(10).
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With the step size X\,, defined in Eq.(12), the gradient descent

algorithm states:
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where hH] denotes the h at iteration (z+1).
Using Eq.(12) in Eq.(11) yields the update rule given in
Eq.(13).

[BVmH% +avhi+!”

VV;;I _ thiz ia _ (13)

[W},,(BH,,,H,Z)WWWH ]
ia

Note that, since the matrices v,, and H,, remain the same at

all iterations of the new sample’s ((m+1)‘]’l sample) update

procedure, storing the multiplications V, H” and H, H! instead

of separate matrices reduces the computational complexity. Update
iterations are repeated till convergence and the encoding matrix

W,, is used as the initial state for running the algorithm when the

(va-l)th sample is received. Note that, the influence of new and
previous frames on the representation can be controlled by B and a.

4. EXPERIMENTAL RESULTS AND CONCLUSIONS

Experimental results are summarized in three subsections. In the
first section, since the NMF aims minimizing the reconstruction
error, a comparison between the conventional and incremental
NMF with respect to their reconstruction performances is done. In
the second section, background modeling is given as an example in
order to show the incremental NMF’s effectiveness in adapting to
content changes. Finally, performance in video scene change
detection is evaluated to demonstrate a potential use of INMF.

4.1. Reconstruction Performance of the INMF

The conventional NMF tries to minimize the reconstruction error
given in Eq.(2). Therefore, the primary comparison between the
conventional NMF and INMF has been made in terms of their
reconstruction performances. In order to observe reconstruction
error with respect to frame number, both the NMF and INMF are
applied on a 150 frames surveillance type of video clip where the
scene does not experience big changes. First, the NMF
representation with /=5 was obtained after initial W and H were
specified as random nonnegative values and the convergence has

been reached at /= 1000 iterations. Then, the INMF was applied on
the same 150 frames with rank fixed to 2. The same initial W and
H matrices were used to initiate INMF iterations. Convergence has
been reached at about =15 iterations per frame. Fig.1 illustrates
reconstruction error f,, for each frame. To justify the effect of the
weighting parameters, the INMF is applied at 2 different pairs of
parameter, (o, B) = (0.2, 0.8) and (0.8, 0.2). As it is expected,
reconstruction error obtained by the introduced INMF is less than
the NMF. Especially for o = 0.8, the INMF outperforms the rest
at all frames. This is because its capability of adapting a new frame
into the factorization in an on-line manner. However, the NMF
reconstructs each individual frame by using the basis matrix W
obtained via the batch processing of 150 frames.

4.2. Dynamic Content Representation by INMF

Background modeling in surveillance type of video is a good
example to judge the dynamic content representation performance
of a statistical method. This requires representation of the
background scene by using a small number of background frames
and then updating this representation in such a way that dynamic
content changes influence the representation appropriately. These
changes include entrance / leaving of an object into / from the
scene and detection of changes in object motions.

In the literature a number of work has been performed for the
representation of background by using Incremental Principal
Component Analysis (PCA) [4]. Influenced by this work, our
recent work in [5] tackles with this problem via the introduced
INMF in more detail. Conventionally, a quantitative measure of
the dynamic content representation capability is the reconstruction
error between the original frame and its reconstruction based on
the background representation of the scene. It is expected to obtain
a significant increase in the error if there is a change in the scene
while the error converges to zero for the background frames. Of
course this is true under the assumption that the representation of
background is satisfactory.

Performance of INMF has been evaluated on a video clip from
the PET2001 video surveillance dataset [4]. At frame 1930, the
scene includes an initially stationary car which starts to move at
frame 1990. In addition to this car, there are also 2 walking men in
the scene. After modeling the background initially, the foreground
objects are tried to be separated from the dynamic background by
using the representations obtained by NMF and INMF. Fig.2,
which corresponds to Frame 2061, is given to compare the
performances. Note that, as a result of updating the background
model dynamically, the INMF is capable of removing the
stationary car from the background as soon as it starts moving and
treating it as a foreground object, whereas NMF fails to do so.
While the same conclusion is valid for the walking men, the flu
sight of the background in the picture also proves that NMF fails to
represent it as successful as INMF. The INMF parameters for this
test were 3 = 0.8 , &« = 0.2 and r=2 for both. 10 frames were used

for representation of the background for both of the methods.
4.3. Video Scene Change Detection by INMF

Aim of the video scene change detection problem is to be able to
detect the frames where scene changes take place. These scene
changes can be classified as “cuts” and “gradual changes.” Clean
cuts are sudden changes between the scenes. In contrast, gradual
changes, i.e., fade in/out, dissolve, wipe, etc., are generally longer
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and can be defined as continuous transitions between two different
video scenes. Obviously, detection of the gradual changes is a
more difficult task. Another difficulty is avoiding false alarms
which are likely to be caused by camera and object movements or
lighting variations throughout a scene.

In the literature a number of video scene change algorithms
have been reported [6]. In this subsection a potential use of INMF
in video scene change detection has been evaluated. The idea
behind is that if the INMF accurately represents the scene content
and the dynamic changes, a significant increase in the
reconstruction error should be detected at the scene change frames.
Thus, determination of a video scene change is done by examining
the changes on the reconstruction errors of the successive frames.

Tests are carried out on over 130000 (%24 of all the
transitions were gradual) frames from the video clips recorded in
TRECVID database [7]. In order to reduce computational
complexity, the INMF has been performed on the DC images of
each frame when =1 and a=1. Table 1 reports the video scene
change performance of the INMF in terms of “precision” and
“recall” [7]. Precision is defined as the ratio of correct matches to
the total number of transitions reported. On the other hand, recall
is the number of correct matches divided by the total number of
actual transitions in the video sequence. Hence, precision gives
clue about the system’s false positive performance whereas recall
is related to false negative ratio. As it is shown in Table 1, the
number of false alarms is small, detection rates for both gradual
transitions and cuts are high, imposing that the INMF is a
promising tool in content analysis. However note that, the results
are obtained by a supervised control mechanism and more tests
with an increased number of gradual changes should be performed
in order to estimate the performance in more detail.

It is concluded that the introduced incremental non-negative
matrix factorization, with its ability to adapt the conventional
NMF’s useful features to its incremental nature, is an efficient tool
for modelling dynamic content in video applications. Besides
making new tests on scene change detection, currently we are
working on derivation of sparse INMF which could be more
beneficial to have more localized, parts-based representations to
increase robustness to lighting variations and motion.
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Fig. 1. Distribution of the reconstruction error wrt frame number.

Table 1. Scene change detection performance of the INMF.

Cuts Graduals Total
True Positives # 590 174 764
False Negatives # 42 28 70
Recall 0.93 0.86 0.92
False Positives # 120
Precision 0.86

Fig. 2. a) Original frame no:2061. b) Incremental NMF (+=2, 0=0.2, p=0.8). ¢) Conventional NMF (r=2).
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