
SENSITIVITY ANALYSIS ATTACKS AGAINST RANDOMIZED DETECTORS

Maha El Choubassi and Pierre Moulin

University of Illinois at Urbana Champaign
Beckman Inst., Coord. Sci. Lab & ECE Dept.

Emails: cel@ifp.uiuc.edu and moulin@ifp.uiuc.edu

ABSTRACT

Sensitivity analysis attacks present a serious threat to the security
of popular spread spectrum watermarking schemes. Randomiza-
tion of the detector is thought to increase the immunity of such
schemes against cryptanalysis. In this paper, we introduce a new
attack against randomized detectors. This attack is successful,
which implies that spread spectrum schemes still lack security.

Index Terms: Watermarking, security, sensitivity analysis at-
tacks, spread spectrum, randomized detectors.

1. INTRODUCTION

Information hiding is about the imperceptible embedding of infor-
mation inside host data such as image signals. The application we
focus on is copyright protection of digital media. In this setup, the
original host signal1 s is either left unchanged (unwatermarked),
or a watermark signal w is embedded into s, resulting in the wa-
termarked signal x = s + w. That is additive spread spectrum
embedding, illustrated in Figure 1. The watermark w is shared
between the embedder and the detector. Once a signal y is in-
put to the detector, the detection function t(y,w) is evaluated and
compared to a detection threshold τ to decide whether y is water-
marked or not. If the detection function is deterministic, the set

{y ∈ R
n : t(y,w) = τ}

is called the detection boundary for the detector t(·,w).
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Figure 1: The watermark embedder and the watermark detector.

The results of [1]-[9] prove that spread spectrum techniques
are vulnerable to sensitivity analysis attacks. In such attacks, the
attacker has access to a watermark detector and a watermarked
signal x. He systematically changes x into auxiliary signals and
inputs them to the detector. Through the leaked information about
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1Unless otherwise stated, all the signals we consider are vectors in

n−dimensional Euclidean space.

the watermark, the attacker obtains an estimate of w. He subse-
quently removes it from x to produce the pirated copy ŝ. The re-
quirements on ŝ are to be perceptually similar to the original host
signal s and to trigger a negative detector’s response.

For a wide class of detectors, all deterministic, the number of
detection operations needed by the attacker to estimate the water-
mark is generally linear in the size of the signal [6, 7, 8]. Since the
watermark detector is the source of leakage of information about
the watermark, we sought randomized detectors to improve the
security of spread spectrum schemes in [10]. Linnartz and van
Dijk [2], and Venkatesan and Jakubowski [9] also used random-
ized detection to increase security. However, this is achieved at
the expense of detection performance. Assuming a generalized
Gaussian distribution (GGD) on the host signal, we built in [10]
a framework to control the loss in the detection performance us-
ing classical detection-theoretic tools: large deviation analysis and
Chernoff bounds. However, while these techniques provide a pow-
erful tool to evaluate the performance of the detector, there is no
ef cient measure to quantify the vulnerability of a watermarking
scheme against sensitivity analysis attacks. In this paper, we con-
struct attack algorithms against randomized detectors. The attacks
aim at generating auxiliary signals on the average detection bound-
ary and reduce the randomized detection scheme into an equivalent
deterministic one. Finally, the attack algorithms built in [6, 7, 8]
against deterministic watermark detectors are applied to the equiv-
alent detector in order to estimate and then remove the watermark.

The paper is organized as follows. In Sec. 2, we describe the
attack algorithm against randomized detectors. In the next three
Secs. 3, 4, and 5 respectively, the approach used to average the
randomized boundary of randomized threshold detectors, random-
ized GGD detectors mixture, and subset selection detectors is ex-
plained. To verify the properties of our new attack, we provide
experimental results in Sec. 6. Finally, we conclude in Sec. 7.

2. ATTACK ALGORITHM

We consider several families of randomized detectors. The analy-
sis is made for given watermark w and signal y and the random-
ness is due to one or several random parameters denoted as Θ and
drawn by the detector from a probability distribution pΘ. The wa-
termark w ∈ R

n is xed and the randomized detection statistic
for detector’s input y is TΘ(y,w), to be compared against the
threshold τ . We de ne the p−boundary Bp as the set of signals y
characterized by

P (TΘ(y,w) > τ |y,w) = p, (1)

where P(E) denotes the probability of an event E . When a signal y
on the p−boundary is input to the detector N times, the expected
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number of positive responses is Np.
In the subsequent sections, we consider three families of ran-

domized detectors: randomized threshold detectors [2], random-
ized GGD detectors [10], and subset selection detectors [9]. The
p−boundary for each family is the same as the detection boundary
of an equivalent deterministic detector. Recall from [6, 7, 8] that
sensitivity analysis attacks are possible due to measurements taken
on the detection boundary by the attacker. Unlike the deterministic
detectors considered in [6, 7, 8], the detectors studied in this paper
are randomized. In this case, the attacker generates signals on the
p−boundary. These signals satisfy (1) with a controllable (and ar-
bitrarily large) degree of accuracy. At the same time, these signals
belong to the detection boundary of the equivalent deterministic
detector. Hence, the attack algorithms of [6, 7, 8] can be used.
Once an estimate ŵ of the watermark is obtained, it is subtracted
from the watermarked signal x resulting in the pirated copy ŝ.

2.1. Generating Points on the p−boundary

For a signal z and a direction d, in order to nd a scalar α such
that the signal y = z + αd is exactly on the p−boundary, an
in nite number of detection probes would be needed. Since this is
not possible, the attacker sets a nite number Nprobes of detection
probes to be used. For a xed p, y, w, and a given randomized
detection function, we de ne the binary function

d(y,w, Nprobes) =

��
�

1, if TΘ(y,w) > τ for more
than pNprobes times

0, else.

The attacker can use any search algorithm, in particular the binary
search algorithm, and use this function in the search queries to nd
signals that are approximately on the p−boundary. As Nprobes →
∞, these signals approach the p−boundary.

3. RANDOMIZED THRESHOLD

Let us consider a deterministic detection test t(y,w), for exam-
ple the correlation detection test or the GGD test. As in [2], let
the detection threshold be a real-valued random variable Θ distrib-
uted according to pΘ(θ). Therefore, the detector is viewed as a
randomized detection statistic with zero threshold:

TΘ(y,w) = t(y,w)−Θ.

Due to (1), signals y on Bp are characterized by

P (Θ < t(y,w)|y,w) = p. (2)

For example, when Θ is a uniform random variable over an interval
[a, b], the p−boundary is given for 0 < p < 1 as

Bp = {y : t(y,w) = p(b− a) + a}

In this case, Bp is the detection boundary of an equivalent deter-
ministic detector

Teq(y,w) = t(y,w),

with threshold p(b − a) + a. Therefore, any of the attack algo-
rithms developed against deterministic detectors Teq(y,w) can be
applied to estimate the watermark.

4. RANDOMIZED GGD DETECTORS MIXTURE

In Sec. 3, a single parameter Θ was randomized. In [10] we stud-
ied a class of detectors with extremely large randomization space.
Each time the detector is probed, the support {1, 2, . . . , n} of the
signal is partitioned into K random subsets (Figure 2a). GGD pa-
rameters, μu and αu, are assigned to each subset u ∈ {1, . . . , K}.
Let {U1, U2, . . . , Un} be n independent and identically distrib-
uted (iid) random variables with alphabet U = {1, 2, . . . , K} and
probability mass function (pmf)

p(u) = λu, if u ∈ {1, 2, . . . , K}. (3)

For each pixel j ∈ {1, 2, . . . , n}, Uj indicates to which subset
this pixel belongs. The probability that a pixel is in subset u is λu,
and
�K

u=1 λu is equal to one.
In this case, Θ = {U1, U2, . . . , Un} and the randomized de-

tection function is given by

TΘ(y,w) =
n�

j=1

Vj ,

where Vj =

���� yj

αUj

����
μUj −

����yj − wj

αUj

����
μUj

. (4)

The p−boundary is the set of signals y that satisfy

P

�
n�

j=1

Vj > τ |y,w

�
= p. (5)

For this purpose, we need to know the distribution of the sum
of random variables

�n
j=1 Vj . First, due to the independence of

{U1, U2, . . . , Un}, {V1, V2, . . . , Vn} in (4) are also independent.
The expected value and the variance of Vj conditioned on yj and
wj are given by

E[Vj |yj , wj ] =

K�
u=1

λu

	���� yj

αu

����
μu

−
����yj − wj

αu

����
μu



,

Var[Vj |yj , wj ] =

K�
u=1

λu

	���� yj

αu

����
μu

−
����yj − wj

αu

����
μu

2

− E[Vj |yj , wj ]
2 (6)

Checking the conditions of Lindeberg’s generalized central limit
theorem [11] (CLT), we conclude that the normalized random vari-
able

Zn =

�n
j=1 (Vj − E[Vj |yj , wj ])��m

j=1 Var[Vj |yj , wj ]
(7)

converges in distribution to a Gaussian random variable with mean
0 and variance 1, as n →∞. Therefore, the p−boundary in (5) is
characterized by

p = P

�

Zn >

τ −�n
j=1 E[Vj |yj , wj ]��n

j=1 Var[Vj |yj , wj ]

������y,w

�
�

∼ Q

�

 τ −�n

j=1 E[Vj |yj , wj ]��n
j=1 Var[Vj |yj , wj ]

�
� , as n →∞,
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for any xed value of p. Therefore, we approximate the p−boundary
for the randomized detector by

B̂p =

�
y ∈ R

n :

n�
j=1

E[Vj |yj , wj ]

+Q−1(p)

���� n�
j=1

Var[Vj |yj , wj ] = τ

��
� . (8)

Note that E[Vj |yj , wj ] and Var[Vj |yj , wj ] are functions of yj and
wj . As we can see, estimating the p−boundary reduces the ran-
domized detector into a deterministic one with detection function

Teq(y,w) =
n�

j=1

E[Vj |yj , wj ] + Q−1(p)

���� n�
j=1

Var[Vj |yj , wj ]

(9)
and same threshold τ as the randomized detector.

The equivalent detection function is highly nonlinear in y.
With the choice of p = 0.5, Q−1(p) becomes zero and (9) simpli-
es into

Teq(y,w) =
K�

u=1

λu

n�
j=1

				 yj

αu

				
μu

−
				yj − wj

αu

				
μu

. (10)

From (10), Teq(y,w) is the expected value of the individual de-

tection functions

n

j=1

			 yj

αU

			μU −
			 yj−wj

αU

			μU

.

At this point the attacker can either tailor an attack against the
equivalent detector in (10), or he can borrow any of the previously
designed attacks. For instance, the attack proposed in [6, 7, 8]
against the GGD detector can be used with μ =


K
u=1 λuμu.

(a) (b)

Set 1

Set 2

Figure 2: A partition of the image support into two sets (K = 2).
(a) Disjoint sets. (b) Overlapping sets.

5. SUBSET SELECTION DETECTORS

In this section, we consider the randomized detector proposed by
Venkatesan et al. in [9]. The scheme is based on selecting a detec-
tion function2

t(y,w, S) =
�
j∈S

t1(yj , wj), (11)

computed over a support subset S ⊆ {1, . . . , n}. Next, the detec-
tor randomly selects many possibly overlapping subsets in the sup-
port of the signal, {1, . . . , n}, and evaluates the detection statistic
over each such subset according to (11), (Figure 2b). The actual

2The authors in [9] choose to use a correlation detector, i.e.,
t1(yi, wi) = yiwi, but we consider a more general setting.

detection coef cient is the median of these statistics. The authors
argue that such a detector is secure against attacks that learn the
watermark by introducing large changes to the value of the signal
at one component. We show that the scheme is still breakable using
sensitivity attacks. With the help of the concept of p−boundary,
we derive the equivalent deterministic detector which can be at-
tacked by already existing algorithms. Let K be the number of
subsets selected and Mk ∈ {0, 1}n be the mask corresponding
to subset k ∈ {1, . . . , K}. That is, Mk,j = 1 indicates that the
jth component of the signal belongs to Sk. Without loss of gen-
erality, assume that K is odd. In our model, Mk is a sequence of
n independent and identically distributed (iid) Bernoulli random
variables with probability ρ:

Mk,j =

�
1, with probability ρ
0, with probability 1− ρ,

with j ∈ {1, 2, . . . , n}. The masks Mk are mutually independent.
The kth statistic is de ned as

T (y,w,Mk) =

n�
j=1

Mk,jt1(yj , wj).

In this setting, the randomization parameters are Θ = {M1,M2,
. . . ,MK} and the resulting randomized function is given by

TΘ(y,w) = median1≤k≤K {T (y,w,Mk)} .

The p−boundary for this detector is characterized by

P (median1≤k≤KT (y,w,Mk) > τ |y,w) = p

P (at least (K + 1)/2 of the statistics ,

T (y,w,Mk) > τ |y,w) = p. (12)

De ne p′ as

p′ � P (T (y,w,Mk) > τ |y,w) .

Note that p′ is independent of k since Mk are iid. In this case, the
binary random variables

Rk =

�
1, if T (y,w,Mk) > τ,
0, else.

are iid Bernoulli with probability p′, i.e., Rk ∼ Be(p′). There-
fore, (12) becomes

p = P

�
K�

k=1

Rk ≥ K + 1

2

�����y,w

�

=

K�
i=(K+1)/2

�
K

i

�
p′i(1− p′)K−i. (13)

In order to describe the p−boundary, the probability p′ has to be
computed. Let Vj = Mk,jt1(yj , wj). The random variables Vj

are independent but not identically distributed. We again use the
generalized CLT and conclude that as n tends to ∞, the random
variable Zn de ned in the same way as in (7) converges in dis-
tribution to a Gaussian random variable N(0, 1). Similarly to the
derivations in Sec. 4, the approximate p−boundary is de ned as

B̂p =

�
y ∈ R

n : ρ
n�

j=1

t1(yj , wj)

+Q−1(p′)

���	 n�
j=1

t21(yj , wj)ρ(1− ρ) = τ


�
�
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Table 1: Nprobes = 5 versus Nprobes = 100. ρ = w·ŵ
‖w‖‖ŵ‖ is the

normalized correlation between w and ŵ.

Nprobes ρ > 0.65 for % of successful attacks
5 5.71% of the attacks 19.29%

100 70.71% of the attacks 53.57%

Note that the attacker selects p′, and then calculates the corre-
sponding value of p as in (13). If he selects p′ = 0.5, then
Q−1(p′) = 0, and Bp is the detection boundary of the equiva-
lent deterministic detector

Teq (y,w) = ρt(y,w).

Hence, for Venkatesan et al.’s scheme, the equivalent deterministic
detector is still the simple correlation detector but with its value
scaled down by a constant factor ρ.

6. EXPERIMENTAL RESULTS

We consider a randomized GGD detector (see Sec. 4) with K = 2
and with GGD exponents μ1 = 1.2 and μ2 = 1.9. For an image of
size 32 × 32, we generated 35 pseudorandom binary watermarks
with equal energy, 1

n
‖w‖2 = 6.75, resulting in 35 watermarked

signals. Against each such signal, we ran our sensitivity analysis
attack algorithm with p set to 0.5, four times with Nprobes = 5
and four other times with Nprobes = 100. We consider an at-
tack to be successful, when the pirated copy ŝ induces a nega-
tive response from the detector and with mean squared distortion
Ds = ‖s − ŝ‖2/n ≤ 6.75. As the Nprobes increases, the auxil-
iary points we generate get closer to the 0.5−boundary producing
more successful attacks as seen in Table 1. For each the 35 water-
marked signals, at least one of the 4 attacks with Nprobes = 100
is successful, while this is true only for 16 watermarked signals
when attacks with Nprobes = 5 are used. Hence the security
of the detector is severely compromised. As shown in Figures 3
and 4, attacks with Nprobes = 100 result in larger correlation ρ,
and smaller distortion Ds.
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Figure 3: Normalized correlation between w and ŵ. The squares
correspond to the attacks with Nprobes = 100 probes, while the
circles correspond to attacks with Nprobes = 5 probes.
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Figure 4: Mean square distortion between s and ŝ

7. CONCLUSION

In this paper we presented a new method to launch sensitivity
analysis attacks against additive spread spectrum schemes with
randomized detectors. The concept of p−boundary is about av-
eraging the randomized boundary of such detectors and conse-
quently treating it as a deterministic boundary. In this case, the
attacks in our previous work [6, 7, 8] are applicable. The prelimi-
nary experimental results in Sec. 6 are encouraging. In the future,
we will report more extensive experiments (including larger values
of Nprobes to more precisely estimate the p−boundary).
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