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ABSTRACT

In this paper, we analyze the effect of various collusion at-
tacks on fingerprinting systems for compressed multimedia.
We evaluate the effectiveness of the collusion attacks in terms
of the probability of detection and accuracy in estimating the
host signal. Our analysis shows that applying averaging col-
lusion on copies of moderately compressed content gives a
highly accurate estimation of the host, and can effectively re-
move the embedded fingerprints. Averaging is thus the best
choice for an attacker as the probability of detection and the
distortion introduced are the lowest.
Index Terms— Digital Fingerprinting, Collusion Resis-

tance, Compressed Signals, Anti-Collusion Dither.

1. INTRODUCTION

With the proliferation of the internet and consequent ease
of redistribution of multimedia, intellectual property protec-
tion has become a challenging problem. Digital fingerprint-
ing is an important tool for traitor tracing and copyright en-
forcement. A unique fingerprint signal is embedded in every
legally distributed copy of the multimedia that can be used
to identify the recipient. Upon obtaining an illegal copy, this
fingerprint is extracted and used to identify the person(s) re-
sponsible for the leak. However, a group of users can mount
powerful collusion attacks whereby the attackers try to create
a copy of the multimedia that does not contain traces of any of
their individual fingerprints. Techniques for systematic con-
struction of fingerprints with collusion resistance have been
proposed in [1, 2, 3]. Independent Gaussian based spread
spectrum sequences are often used for modulation as they
have been shown to have good collusion resistance when fin-
gerprinting uncompressed signals.
In most cases, however, multimedia content is stored and

transmitted in compressed form to conserve bandwidth. Con-
sider, for example, a cable TV distribution service which has
millions of subscribers. The service provider transmits video
in compressed form to conserve precious bandwidth. To deter
and identify pirates in the case of illegal redistribution, finger-
prints are embedded in the video by the set-top box. However,
a group of users may capture and store the output of the set-
top box using devices such as Digital Video Recorders (DVR)
and then collude to remove the embedded fingerprints. On-
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line music and video stores may also require fingerprints to
be embedded in compressed multimedia signals.
To the best of our knowledge, the problem of collusion re-

sistant fingerprinting for compressed multimedia signals has
not been addressed in prior work. Recently, we have shown
that traditional independent Gaussian fingerprinting does not
performwell for compressed signals, and is easily defeated by
averaging and median attacks at moderate levels of compres-
sion [4]. Our results indicate that by applying Anti-Collusion
Dither, the collusion resistance of the fingerprinting system
can be approximately quadrupled [4].
In this paper, we present a theoretical framework to an-

alyze the effect of various collusion attacks on compressed
multimedia fingerprinting systems. We first compute the prob-
ability of successfully catching a guilty colluder for various
collusion attacks. We then examine collusion in an estima-
tion framework and evaluate the effectiveness of the attack in
terms of the Mean Squared Error of the estimate.

2. SYSTEMMODEL

The system model for fingerprinting compressed signals is
shown in Fig. 1. The host signal can be represented by the
vector S consisting ofM components [S1, S2, . . . , SM ]. For
simplicity, we consider S to consist of elements from one fre-
quency band, such as one frequency location in the 8×8 block
DCT of images or video. We model the compression of the
host image/video as quantization of the DCT coefficients, so
that Sj = mΔ, wherem = 0,±1,±2, . . . andΔ is the quan-
tization step size for the particular frequency band. The fin-
gerprint is then embedded into the quantized host signal S.
After the embedding process, since the fingerprinted sig-

nal for user α, X(α), is also stored in compressed form, it
is quantized, i.e., X(α)

j = mΔe. The quantization step size
Δe models the compression of the fingerprinted signal and is
chosen by the embedder to achieve a tradeoff between the dis-
tortion introduced and communication bandwidth. Choice of
Δe > Δ will result in larger distortion and choosingΔe < Δ
will result in greater bandwidth requirements. Hence, a rea-
sonable choice for the embedder is to setΔe = Δ.
Our analysis considers the scenario of additive embed-

ding under the setting Δe = Δ. Denoting the fingerprint
for user α as Wc

(α), the fingerprinted signal is obtained as
X

(α) = S + W
(α), where W

(α) = round
(

Wc

(α)

Δ

)
× Δ.
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The energy of the fingerprint is chosen such that embedding
does not introduce perceptual distortion:

E[‖S− X
(α)‖2] = E[‖W(α)‖2] ≤ M · D(Δ), (1)

whereD(Δ) is the maximum allowed squared distortion given
the quantization step size Δ.
A group of K users Sc may collude and attempt to cre-

ate an unauthorized copy V that does not contain traces of
their fingerprints. The colluded signal may be compressed
for easy storage and transmission. LetΔc be the quantization
step size corresponding to the compression of the colluded
signal so that Vj = mΔc. The attackers’ choice of Δc is
affected by the value of Δ. Choosing Δc < Δ would not
improve the quality of the colluded signal as the host has al-
ready been quantized with stepΔ. Also, smaller quantization
step size may not be effective in removing traces of the fin-
gerprint leading to a higher probability of a colluder being
caught. On the other hand, choice of Δc > Δ would intro-
duce further distortion. Hence, in this paper, we consider the
case Δc = Δ as a reasonable tradeoff for the colluders. The
colluded signalV is obtained from the fingerprinted versions
asV = g({X(k)}k∈Sc

), where g(·) is the collusion function.
Colluders may use linear or nonlinear collusion functions

g(·) such as those studied in [5] for uncompressed signals.
These collusion functions can be extended to compressed sys-
tems by adding quantization and are defined as follows:

Average : V avgj = round

��
k∈Sc

X
(k)
j

KΔ

�
×Δ,

Median : Vmedj = round

�
median({X(k)

j }k∈Sc)

Δ

�
×Δ,

Minimum : Vminj = min({X
(k)
j }k∈Sc),

Maximum : Vmaxj = max({X
(k)
j }k∈Sc),

Minmax : Vminmaxj = round

�
Vmaxj + Vminj

2Δ

�
×Δ,

Modneg : Vmodnegj = V
max

j + V
min
j − V

med
j , (2)

where Modneg represents the modified negative attack. Col-
luders may apply further processing such as adding noise or
filtering which we model as additive white Gaussian noise, n,
to obtain the attacked signal Z = V + n as shown in Fig. 1.
Upon obtaining the attacked signal, a correlation based

detector is used to identify at least one of the guilty users. In-
terference from the host signal is first removed by subtracting
the host S, which is usually available to the detector in finger-
printing applications, from the attacked signal. The detector
then subtracts the mean of the extracted fingerprint to obtain
the test signal. The user q whose fingerprint has the maxi-
mum correlation T (q) with the test signal is declared guilty,
i.e., q = arg maxα=1,2,...,N T (α), where

T (α) =
1

M
〈h(Z−S),Wc

(α)〉, withh(Y) = Y−mean(Y).
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Fig. 1. System Model

3. STATISTICAL ANALYSIS OF COLLUSION

In this section, we characterize the statistical behavior of the
detection statistics T (α) under collusion attacks and compute
the probability of catching a guilty user.

Theoretical Analysis Framework: The test signal h(Z−S)
can be represented as

h(Z− S) = h(V + n− S) = h(g({W(k)}k∈Sc
)) + n,

since g({X
(k)
j }k∈Sc

) = Sj + g({W
(k)
j }k∈Sc

) for the attacks
considered and n is zero mean. Denoting g′(·) = h(g(·)),
we have T (α) = 1

M

∑M

j=1(g
′({W

(k)
j }k∈Sc

) + nj) × Wc
(α)
j .

As the Wc
(α)
j are assumed independent and identically dis-

tributed (i.i.d.), T (α) follows a Gaussian distribution from the
Central Limit Theorem. Further, the mean and variance of
the Gaussian distribution are independent of j due to the i.i.d.
property, and depend only on whether α belongs to the set of
colluders Sc or not. Dropping the subscript j, the mean and
variance of T (α) for α /∈ Sc can be shown to be
mean: μ0 = E[g′({W (k)}k∈Sc) + n]E[Wc

(α)] = 0,

variance: σ
2
0 =

1

M
E[((g′({W (k)}k∈Sc) + n)Wc

(α))2]

=
1

M
E[(g′({W (k)}k∈Sc))

2 + n
2]E[(Wc

(α))2].

Here, the equalities follow due to the independence assump-
tion and since theWc

(α) are zero mean. Similarly, forα ∈ Sc,
we can derive the mean and variances to be

mean: μ1 = E[g′({W (k)}k∈Sc)Wc
(α)],

variance: σ
2
1 =

1

M

�
E[(g′({W (k)}k∈Sc)W

(α)
c )2]

+ E[n2]E[(W (α)
c )2]

�
− μ

2
1.

The quantities μ1, σ2
0 , and σ2

1 can be computed from the joint
probability density f(g({W (k)}k∈Sc

), W
(α)
c ), α ∈ Sc and

the distribution of g({W (k)}k∈Sc
). The probability of suc-

cessfully catching one colluder is then given by the probabil-
ity that the detection statistic for one of the colluders is larger
than the detection statistics of all the innocent users:

Pd = Pr(max
k∈Sc

T
(k)

> max
α/∈Sc

T
(α)).

Analysis of Averaging Collusion: Due to space constraints,
we illustrate using the averaging attack as an example in this
paper, and our approach can be extended to other attacks in
(2). LetW ′ = 1

K

∑
k∈Sc

W (k) andW avg=round
(

W ′

Δ

)
×Δ.
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Fig. 2. Probability of catching one colluder using Gaussian based
fingerprints at WNR = 0dB, 1024 users,M = 104, D(Δ) = 15.

Then, Pr(W avg = mΔ) = Pr(W ′ ∈ Im), where Im =[
mΔ − Δ

2 , mΔ + Δ
2

)
. The characteristic function of W ′,

M ′(t) = E[exp(itW ′)] is related to the characteristic func-
tion of W (α), M(t), as M ′(t) = [M( t

K
)]K , where K is the

number of colluders. The probability mass function (pmf) of
W ′ is then given as

Pr

�
W

′=m
Δ

K

�
=

1

2πK

� πK

−πK

exp

�
−

itmΔ

K

��
M

�
t

K

��K

dt.

The joint distribution f(W avg = mΔ, W
(α)
c = w), α ∈ Sc

can be written as the product of the conditional distribution
Pr(W avg = mΔ|W (α) = nΔ) and the marginal distribu-
tion f(W

(α)
c = w). The conditional distribution can then be

computed as
Pr(W avg = mΔ|W (α) = nΔ)=Pr

�
W

′ ∈ Im|W
(α) = nΔ

�

=Pr

�
	 1

K



k∈Sc\{α}

W
(k) ∈ Im,n

�
�

where Im,n =
[
mΔ − Δ

2 − nΔ
K

, mΔ + Δ
2 − nΔ

K

)
. The con-

ditional distribution can now be computed from the pmf

Pr

�
	1

K



k∈Sc\{α}

W
(k)=

mΔ

K

�
�=

1

2πK

� πK

−πK

exp

�
−

itmΔ

K

��
M

�
t

K

��K−1

dt.

Results for Gaussian Fingerprints: We study the perfor-
mance of compressed multimedia fingerprinting systems un-
der the traditional independent Gaussian based fingerprints.
For our experiments, we focus on one frequency band in the
8 × 8 block DCT domain and the results can be extended
to the multi-channel case. Since the host signal, the finger-
printed signal and the colluded signal are all quantized with
the same step size Δ, the results obtained are independent of
the host signal. To construct the fingerprint sequences, zero
mean Gaussian random variables are generated and quantized
with step sizeΔ to obtainW

(α)
j . The variance of the Gaussian

random variables is chosen such that the distortion constraint
in (1) is satisfied. We consider a system with N = 1024
users and set the fingerprint lengthM = 104 which represents
the approximate number of embeddable DCT coefficients in
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Fig. 3. Probability of catching one colluder for fingerprinting with
ACD at WNR = 0dB, 1024 users,M = 104,D(Δ) = 15.

a typical 256 × 256 image. The maximum allowed distor-
tion D(Δ) is set to 15 such that if every embeddable DCT
coefficient were used for embedding with the same allowed
distortion, the PSNR would be approximately 36 dB. Here,
we present results for Δ = 6 that corresponds to the quan-
tization step size of the AC11 band at a JPEG quality factor
setting of 75 as it generally provides a good tradeoff between
signal quality and bit rate.
Fig. 2 shows the probability of successfully catching one

colluder Pd versus the number of users participating in the
collusion for various attacks. The power of additive noise is
set to be the same as the power of the watermark, i.e., the
Watermark-to-Noise Ratio (WNR) is set to 0 dB for each of
the attacks. From the figure, we observe that the probabil-
ity of catching a guilty user is the lowest for averaging attack
and the system can resist only 7 colluders with Pd ≈ 1. The
median attack is also very effective at removing traces of the
fingerprints. The minimum and maximum attacks are less ef-
fective, and the modified negative and the minmax attacks are
the least effective attacks.

PerformanceAnalysis under Anti-Collusion Dithering: To
improve the collusion resistance of compressed domain fin-
gerprinting systems, we have recently proposed a dithering
technique to make the embedded fingerprint appear more con-
tinuous [4]. The fingerprinted signal for user α is obtained as

X
(α)
j = round

(
Sj+dj+Wc

(α)
j

Δ

)
, where dj is uniformly dis-

tributed on [−Δ/2, Δ/2]. The dither d is added to make
the host appear more continuous and is referred to as Anti-
Collusion Dither (ACD) since it has been shown to improve
the collusion resistance [4]. The embedded fingerprint is then
detected by computing the correlation 1

M
〈h(Z−S−d),Wc

(α)〉.
A similar theoretical analysis can be performed for the

attacks in (2) under Anti-Collusion dithering. Fig. 3 shows
the probability of catching one colluder versus the number of
colluders for fingerprinting using ACD. We observe that the
collusion resistance against averaging and median attacks has
now approximately quadrupled and approximately 30 collud-
ers can be resisted; and the collusion resistance for the mini-
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Fig. 4. MSE of various estimators for fingerprinting (a) without ACD and (b) with ACD forΔ = 6.

mum and maximum attacks has also increased. For the mod-
ified negative attack, the probability of catching a colluder is
the lowest making it the best choice for an attacker purely
from the probability of detection point of view. In the next
section, we examine collusion from an estimation perspective
and evaluate the effectiveness of collusion attacks in terms of
the accuracy of estimating the host signal.

4. COLLUSION AS AN ESTIMATION PROBLEM

Collusion attacks to remove traces of the fingerprints can be
considered as estimating the host signal, Sj , given the finger-
printed versionsX(k)

j = Sj +W
(k)
j , k ∈ Sc. Let the estimate

of the host signal be represented as Ŝj = G′({X
(k)
j }k∈Sc

),
where G′(·) is some suitable estimator. The accuracy of the
estimate or, equivalently, the effectiveness of the collusion at-
tack can be measured in terms of the Mean Squared Error
(MSE), given by ε = E[(Sj − Ŝj)

2]. The collusion attacks
considered in (2), can be considered as estimators if we set
G′(·) = h(g(·)) for the collusion attack g(·). These estima-
tors satisfyG′({X

(k)
j }k∈Sc

) = Sj +G′({W
(k)
j }k∈Sc

). Thus,
the MSE simply becomes the variance of the colluded finger-
print. The MSE can thus be obtained from the distribution
of the colluded signal as derived in Section 3. In [6], the au-
thors adopt a similar approach to study uncompressed domain
fingerprinting but do not provide explicit evaluation of the es-
timation accuracy for the various attacks.
Fig. 4 shows the MSE of the various estimators as a func-

tion of the number of colluders for the experimental setup
described in Section 3. From Fig. 4(a), we notice that averag-
ing collusion has the lowest MSE followed by median, min-
imum, minmax, and modneg attacks for fingerprinting using
independent Gaussian based fingerprints and thus averaging
gives the best estimate. Fig. 4(b) shows that the MSEs of all
the estimators are significantly higher than without dithering.
This suggests that these collusion attacks are not as effective
in this case as in the case of fingerprinting without dither. In
both cases, averaging is the most accurate estimator of the
host signal.
The distortion introduced by the collusion attack, mea-

sured with respect to the host, is given by the second moment

of the colluded fingerprint and is equal to the sum of the MSE
and the square of the mean. For averaging, median, minmax
and modified negative, the mean of the colluded fingerprint is
zero and the distortion introduced is equal to the MSE. For the
minimum and maximum attacks, the colluded fingerprint has
non-zero mean and the distortion increases with the number
of colluders. From Fig. 4(a) and (b), we observe that averag-
ing introduces the lowest distortion. Thus, from the colluders’
perspective, averaging is the best attack as it provides accu-
rate estimate of the host signal and also introduces the lowest
distortion. The modified negative attack introduces the high-
est distortion and is hence not preferable.

5. CONCLUSIONS

In this paper, we provide theoretical analysis of various non-
linear collusion attacks on fingerprinting systems for com-
pressed multimedia signals. We evaluate the effectiveness of
collusion attacks in terms of the probability of detection Pd

and the accuracy of estimating the host signal. We show that
averaging collusion gives a highly accurate estimate of the
host signal and can effectively remove the embedded finger-
prints. Averaging is thus the best choice for an attacker as the
probability of detection and the distortion introduced is the
lowest.
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