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ABSTRACT

We present a method for detecting steganography using ±1

embedding. The method uses a lossless compression tech-

nique to compress the last two bitplanes in an effort to model

the image structure where the data may be hidden. A small

number of statistics are then computed using the model and

fed into a support vector machine to classify detection re-

sults. Results presented are obtained using k-fold cross-

validation method using a large set of never compressed

grayscale images. Detection results show improvement over

current ±1 steganalysis methods.

1. INTRODUCTION

Steganography is the art and science of communicating by

embedding hidden information in a cover object. The em-

bedded data should be invisible to anyone not participat-

ing in the communication. Steganography has multiple uses

such as covert communication and hiding information to

maintain backward compatibility. Steganography has simi-

larities to digital watermarking in the desire to keep infor-

mation hidden but watermarking has the additional facet of

requiring that the hidden message be robust to removal.

There are many techniques for steganography. Some are

simple substitution methods where the hidden data is di-

rectly substituted for the information in the cover. Others

can be quite complex and use communication techniques

such as spread spectrum [1]. Various types of data can

be embedded with hidden information. Digital images are

popular choices for covers. Other choices include audio,

video and even computer code and network traffic. Because

steganography can be easily performed—in fact least sig-

nificant bit (LSB) replacement in digital images can be ac-

complished with a two-line Perl script—it is desirable to be

able to reliable detect the presence of steganography. Such

an effort is called steganalysis.

In this paper, we present a steganalysis method that tar-

gets a type of LSB steganography for digital images called

±1 embedding. ±1 embedding is as simple to accomplish
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as other LSB replacement methods but much more difficult

to detect. Our steganalysis method makes novel use of loss-

less compression to model an image and detect steganogra-

phy. On a test suite of 1200 images, half with 0.5 bits per

pixel of embedded information, it classifies 97% correctly.

This performance is excellent.

In the following sections we will provide background

on ±1 embedding and give a brief overview of the perfor-

mance of current detection methods. Then in Section 3 our

method will be described in detail. Experimental results will

follow. Lastly, conclusion and recommendations for future

work will be presented.

2. BACKGROUND

In this section, we describe ±1 embedding, and discuss ex-

isting software and techniques that attempt to detect its pres-

ence.

Both LSB replacement and ±1 embedding select a sub-

set of the pixels pseudorandomly using a secret key known

to both sender and receiver. In LSB replacement, the least

significant bit of each selected pixel is replaced by a bit from

the hidden message. Note, on average only half these bits

will actually be changed; for the other half, the message bit

is the same as the image bit already there. In ±1 embed-

ding, if the bit must change, ±1 is added to the pixel value.

Whether to use “+” or “−” is chosen randomly and has no

effect on the hidden message. The detectors for both LSB

replacement and ±1 embedding work the same way: the

LSB for each selected pixel is the hidden bit.

Since LSB techniques are fairly easy to implement and

have a potentially large payload capacity, there is a large

selection of steganography software available for purchase

and via shareware (e.g., www.stegoarchive.com).

There are also reliable methods used to detect LSB re-

placement such as sample pairs analysis [2, 3]. These meth-

ods exploit the imbalance in pairs of adjacent pixels. When

a change is made in LSB replacement, odd pixels can only

be decremented and even pixels can only be incremented.

Such an imbalance does not exist in ±1 steganography and

therefore pairs analysis does not work very well at all.
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Detecting ±1 steganography is much harder than de-

tecting LSB replacement. One technique uses a method

akin to pairs analysis to detect ±1 embedding [4] and good

performance was obtained when the cover image has been

previously compressed and for ±k embedding when k =
3 [5]. Goljan, et al. presented a method that uses wavelet

decomposition to calculate the high frequency components

from which features are extracted [6]. They also incorpo-

rate the use of side information (e.g, specific camera make

and model) if available.

Detection of ±1 embedding is most challenging when

the cover image is a never-compressed image. With previ-

ously compressed images much high frequency information

has been removed by the compression. If ±1 embedding

is then applied to a compressed image, the added high fre-

quency information in the image is more easily detected.

3. THE MODEL

Succesful steganalysis requires an understanding of images

without steganography and of images with steganography.

The steganalyst looks for differences in the two types of

images.

Our method uses lossless image compression to model

the image and looks for discrepancies between the model

for original images and for those containing steganography.

In a typical lossless compressor, a model generates predic-

tions. These predictions are fed to an entropy coder, which

performs the actual compression. The compressor gener-

ates various statistics and those statistics are fed to a sup-

port vector machine (SVM). The SVM classifies the input

into two classes: not containing steganography, or contain-

ing steganography.

3.1. Lossless Compression

The lossless compression we use is called BCTW [7], for

Bitplane-CTW, where CTW is the Context Tree Weighting

algorithm [8, 9]. BCTW compresses an image bitplane by

bitplane, from the most significant to the least significant.

BCTW uses two different contexts, one for the most sig-

nificant bitplane and one for all other bitplanes. The pixels

within each context are quantized with a novel quantization

scheme.

Since the steganography in which we are interested mostly

affects the least significant bitplanes, we only consider the

compression of the last two bitplanes.

The context used for the last two bitplanes is given in

Figure 1. CTW weights the bits in the context in order

given. Pixel 1 is the most important, followed by pixel 2,

etc., until pixel 6, the least important. For the 7th and 8th

bitplanes, information from previous bitplanes is used in the

quantization. Let X̂ be the unknown pixel whose e’th bit

is being compressed. Since e − 1 bits of X̂ have already

been determined, X̂ can be any value in a range from Xl to

Xu− 1 = Xl +28−e− 1. For Xl, the remaining bits are all

0’s; for Xu− 1, all 1’s. For example if the first 6 bits are all

0, then X can be any value from 0 to 3; if the first 7 bits are

all 0, then X can be 0 or 1.
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Figure 1: C1, the context used for the second through last

bitplanes. The “non-causal” pixels, 5 and 6, use information

only from previous bitplanes.

In Figure 1, pixels 1–4 are quantized to four values: be-

low the range, in the bottom half of the range, in the top half

of the range, and above the range. Let Xi (i = 1, 2, 3, or 4)

be a neighboring pixel and let Q(Xi, X) be the quantization

of Xi. Then,

Q(Xi, X) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 Xi < Xl

1 Xl ≥ X < (Xu + Xl)/2
2 (Xu + Xl)/2 ≤ X < Xu

3 Xu ≤ X

(1)

Pixels 5 and 6 use information in previous bitplanes only

(their values in the current bitplane are unknown). They are

quantized to three values: below the range, in the range,

and above the range. There are 44 ∗ 32 = 2304 entries in

the CTW lookup table.

3.2. Statistics and Training

From the context and quantization model above, the follow-

ing twelve statistics are kept and given to a support vector

machine (SVM) for classification:

• The average bits per pixel for the 7th and for the 8th

bitplanes. The idea is that these give a measure of the

complexity of the image.

• The probability of the 8th bit being a 1 given two

specific contexts: the first is where all neighbors are

equal to Xl and the second is where all neighbors are

equal to Xu.

• The probability of the 8th bit being a 1 for eight con-

texts chosen as described below.

First consider the case where the image does not con-

tain any steganography. If we consider a particular context,
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c, then Pr(B = 1|c) = pc, where B is the LSB being com-

pressed. If the compression algorithm is compressing the

8th bitplane–even a little!–then some contexts must be esti-

mating the pixels with pc close to 0 or to 1. (If close to 1,

then replace pc by 1−pc.) Thus, there must be some context

with

Pr(B = 1|c) ≈ 0. (2)

Now, consider the same context, but for an image con-

taining steganography. For an embedding rate of ε, about

half the embedded bits will be different from the original

bits. If we assume that context has not changed, then

Pr(B = 1|c) ≈ ε/2 (3)

Thus, the idea behind this steganalysis technique is to

look at the best contexts and see whether the probability

estimate is zero or is greater than zero.

After running the compression algorithm on the suspect

image, we sort the probability estimates. To compensate for

noise and statistical effects, we select eight statistics, num-

bering from 0: 0, 1, 3, 7, 15, 31, 63, 127. These twelve

statistics are input to a SVM classifier. We use the freely

available libsvm[10]. In particular, we use a Gaussian ra-

dial basis function kernel and five-fold cross-validation to

determine the best model.

4. EXPERIMENTAL RESULTS

For testing and evaluation, we used 1200 images from the

van Hateran database[11]. These images are generally out-

door, nature images. They are greyscale and have never

been compressed. The images are 1536 × 1024 pixels and

were converted from 16 bits per pixel to 8 bits per pixel.

Generally speaking, greyscale, never compressed, images

are considered to be a difficult dataset for ±1 embedding

steganalysis.

In testing, we used five-fold cross-validation, meaning

that the dataset is (randomly) divided into five groups. Each

group is tested against the other four. I.e., the four groups

are used to train the SVM classifier and the fifth group is

used for evaluation. In this way, all images are used for

both training and testing.

Half the 1200 images contained±1 embedded steganog-

raphy at various rates and half did not. For each rate, we

trained a SVM to classify the images into two groups: con-

taining steganography or not. The results are shown below

in Figure 2

As a basis of comparison, we also show the results of

the same algorithm on (the much easier to detect) LSB re-

placement. In this case, the classifier was trained using LSB

replacement steganography in the manner described above.

Clearly, LSB replacement is easier to detect, but ±1 em-

bedding is well detected also. At a 20% embedding rate
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Figure 2: Probability of Correct Classification Versus Em-

bedding Rate. Success probabilities for both LSB replace-

ment and ±1 embedding are presented.

(only 10% of the pixels changed), our algorithm correctly

identifies 86% of the images; at 30% embedding, 91%; and

at 50% embedding rate, 97% are correctly identified. We

regard this as an excellent result for ±1 steganalysis.

In Figure 3, we show Receiver Operating Characteristic

(ROC) curves for two different embedding rates: 20% em-

bedding and 50% embedding. Obviously, 50% embedding

is more detectable than 20% embedding. Another common

way to present False Positive rates as in Table 1.

Table 1: False Positive (FP) Rates

Embedding Rate 50% Detection 80% Detection

50% 0.00 0.003

20% 0.06 0.18

5. CONCLUSIONS AND FUTURE WORK

We have presented a new technique for detecting±1 steganog-

raphy in digital images. The technique makes use of a loss-

less image compressor to generate statistics and uses a ma-

chine classifier to determine whether or not a suspect image

contains steganography. We presented the results of a study

of 1200 never compressed, greyscale, images.

While we believe the results are excellent, much further

work remains. Firstly, we need to test other methods on this

same database. Then we can make a precise comparison

to other methods. However, in steganalysis which method

works best is not too important. Two or more methods that

individually work well can be combined into a single fused
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method that should outperform any of them. Clearly, this

method works at least well enough to be a candidate for

fusion with other methods.

We also need to optimize the selection of statistics (they

were somewhat arbitrarily chosen here). The execution time

of our method is almost completely dominated by time to

compress the image. Some study is needed to see if the

compression time can be reduced without significantly im-

pairing the overall detection performance. Also, the method

should be extended to estimate the embedding fraction, ε.

The obvious next step is to extend this work to steganal-

ysis of JPEG compressed images (where the hidden infor-

mation is embedded in JPEG coefficients). Finally, the method

presented here should also be extensible to other covers,

such as audio and video.

6. REFERENCES

[1] Lisa M. Marvel, Charles G. Boncelet Jr., and

Charles T. Retter, “Spread spectrum image steganog-

raphy,” IEEE Trans. on Image Processing, Aug. 1999.

[2] A. Ker, “A general framework for structural steganal-

ysis of lsb replacement,” in Proc. of the 7th Interna-
tional Workshop on Information Hiding, Berlin, Ger-

many, 2005, LNCS, Springer-Verlag.

[3] S. Dumitrescu, X. Wu, and Z. Wang, “Detection of lsb

steganography via sample pair analysis,” in IH ’02:
Revised Papers from the 5th International Workshop
on Information Hiding, London, UK, 2003, pp. 355–

372, Springer-Verlag.

[4] P. W. Wong, H. Chen, and Z. Tang, “On steganalysis

of plus-minus one embedding of continuous tone im-

ages,” in Security, Steganography, and Watermarking
of Multimedia Contents VII, E. Delp and P. W. Wong,

Eds., January 2005, vol. 5861 of Proc. of SPIE-IS&T.

[5] Taras Holotyak, Jessica Fridrich, and David Soukal,

“Stochastic approach to secret message length esti-

mation in ±k embedding steganography,” in Secu-
rity, Steganography, and Watermarking of Multimedia
Contents VII, E. Delp and P. W. Wong, Eds., January

2005, vol. 5681 of Proc. of SPIE-IS&T.

[6] Miroslav Goljan, Jessica Fridrich, and Taras Holotyak,

“New blind steganalysis and its implications,” in Secu-
rity, Steganography, and Watermarking of Multimedia
Contents VIII, E. Delp and P. W. Wong, Eds., January

2006, vol. 6072 of Proc. of SPIE-IS&T.

[7] C. G. Boncelet Jr., “Lossless image compression with

BCTW,” in Proc. of the IEEE ICIP 2006, Atlanta, GA,

October 2006.

[8] Frans Willems, Yuri Shtarkov, and Tjalling Tjalkens,

“The context-tree weighting method: basic proper-

ties,” IEEE Trans. on Info. Theory, vol. 41, no. 3, pp.

653–64, May 1995.

[9] S. Xiao and C. G. Boncelet Jr., “On the use of

context-weighting in lossless bilevel image compres-

sion,” IEEE Trans. on Image Proc., 2004, Submitted

for publication.

[10] Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a li-
brary for support vector machines, 2001.

[11] J. H. van Hateran and A. van der Schaaf, “Independent

component filters of natural images compared with

simple cells in primary visual cortex.,” in Proc. Royal
Society of London, 1998, pp. 359–366.

0.0 0.2 0.4 0.6 0.8 1.0
False Alarm Rate

0.0

0.2

0.4

0.6

0.8

1.0

D
e
te

ct
io

n
 R

a
te

Area Under Curve = 0.8847

0.0 0.2 0.4 0.6 0.8 1.0
False Alarm Rate

0.0

0.2

0.4

0.6

0.8

1.0

D
e
te

ct
io

n
 R

a
te

Area Under Curve = 0.9926

Figure 3: ROC curves for 20% and 50% embedding rates.

The areas under the curves are 0.88 and 0.99.
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