
STEGANALYZING TEXTURE IMAGES

Chunhua Chen1, Yun Q. Shi1, and Guorong Xuan2

1 New Jersey Institute of Technology, Newark, NJ, USA ({cc86, shi}@njit.edu)
2 Tongji University, Shanghai, China

ABSTRACT

A texture image is of noisy nature in its spatial representation. As a
result, the data hidden in texture images, in particular in raw
texture images, are hard to detect with current steganalytic
methods. We propose an effective universal steganalyzer in this
paper, which combines features, i.e., statistical moments of 1-D
and 2-D characteristic functions extracted from the spatial
representation and the block discrete cosine transform (BDCT)
representations (with a set of different block sizes) of a given test
image. This novel scheme can greatly improve the capability of
attacking steganographic methods applied to texture images. In
addition, it is shown that this scheme can be used as an effective
universal steganalyzer for both texture and non-texture images.

Index Terms—steganalysis, texture images, block discrete
cosine transform, rake transform

1. INTRODUCTION

Image steganalysis is referred to as the art and science to detect
hidden message in images for covert communications. Several
universal steganalyzers have been developed since the beginning
of this century. Farid proposed a universal steganalysis method in
[1], which can achieve detection accuracy generally better than
random guess. This method uses quadrature mirror filters to
decompose a test image into wavelet subbands first. The higher
order statistics are thereafter calculated from wavelet coefficients
and their prediction-errors of each high-frequency subband to form
features. In [2], another universal steganalysis system was
proposed by Shi et al. Different from [1], the statistical moments
of the characteristic function (CF) (instead of the histogram) of a
given image, its prediction-error image, and their discrete wavelet
transform (DWT) subbands (including all of the low-low
subbands), are selected as features. Compared to [1], this method
improves steganalysis performance noticeably.

Texture images are of noisy nature. Hawkins describes image
texture in detail in [3]: “The notion of texture appears to depend
upon three ingredients: (1) some local ‘order’ is repeated over a
region which is large in comparison to the order’s size, (2) the
order consists in the nonrandom arrangement of elementary parts,
and (3) the parts are roughly uniform entities having
approximately the same dimensions everywhere within the
textured region.” When steganographic tools are applied to a
texture image and in particular when the resultant stego images are
raw images, the embedded signal is submerged, which causes
difficulty in steganalysis. This was observed during our research

on steganalysis in 2004 [4]. Specifically, while our developed
steganalytic method [2] performs quite well on 1096 natural
images in the CorelDraw Version 10.0 software CD #3 [5], its
performance deteriorates dramatically in steganalyzing texture
images, especially when the resultant stego images are raw images.
The effect of texture images on steganalysis was also reported by
Bohme [6]. There it is found that images with noisy textures yield
least accurate detection results for two steganalytic methods, i.e.,
Regular-Singular (RS) analysis and Weighted Stego Image (WS)
analysis proposed by Fridrich, and conversely, both of these two
steganalytic methods work well on images with flat regions and
soft gradients. Thus with the least detectability, texture images
may be selected as the cover for steganography. Effective
steganalyzers specifically designed for texture images are therefore
called for.

In this paper, we propose a novel steganalysis scheme, which
combines features (statistical moments of 1-D and 2-D
characteristic functions) extracted from the spatial representation
and the block discrete cosine transform (BDCT) representations
(with a set of different block sizes) of a given test image. With this
newly developed steganalyzer, the steganalysis capability for
texture images is greatly improved. In addition, this steganalyzer
can be used as an effective universal steganalyzer for both texture
and generally smooth images.

The rest of this paper is organized as follows. In Section 2, we
describe the proposed steganalyzer. Experiments and results are
presented in Section 3. Finally, a summary is given in Section 4.

2. PROPOSED STEGANALYZER

As mentioned in Section 1, the method [2] works well on the
CorelDraw images but its performance on texture images is not
satisfactory, as shown in Tables 2 (Section 3). The method [2] is
partially based on the first three order statistical moments of the
characteristic function, which is defined as the discrete Fourier
transform (DFT) of the histogram of a given image. It has proven
that after a message is embedded into an image, the above-defined
moments will decrease or remain the same under the assumption
that the hidden data is additive to and independent of the cover
image and in such a distribution manner that the magnitude of its
CF is non-increasing from 1 to N/2 [2]. Statistical investigation has
shown that, the above-defined moments derived from the
CorelDraw images decrease more than that derived from the 798
texture images used in our reported experimental work in this
paper after the same data embedding process (e.g., generic Least
Significant Biplane (LSB) replacement embedding [7] at 0.3 bpp
(bits per pixel)). This observation partially explains the reason why
the method [2] works effectively on CorelDraw images but its
performance on texture images is unsatisfactory. Therefore, it is
necessary to introduce new features to steganalyze texture images.
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In [8], Chen et al proposed a universal steganalysis scheme,
which performs well in attacking modern JPEG (Joint
Photographic Experts Group) steganographic tools [9, 10, and 11].
This scheme utilizes features extracted from an image’s JPEG
representation, where the message is embedded, in addition to
features from the image’s spatial representation. This inspires us
that combining features derived from the domain in which the data
embedding is operated and features derived from a transform
domain may enhance the steganalysis capability.

In this newly proposed steganalysis scheme, in addition to
features generated from the spatial representation of a given image,
we propose to add features generated from the block discrete
cosine transform (BDCT) representations with a set of different
block sizes. Referred to as “rake transform”, these BDCT’s can
greatly improve the steganalysis performance. The feature
generation procedure also involves prediction-error, DWT, 1-D
(one-dimensional) and 2-D characteristic functions, and
moments/marginal moments. Shown in Figure 1 (a) is the block
diagram of our proposed feature generation scheme. The moment
extraction block in Figure 1 (a) is given in detail in Figure 1 (b).

Similar to a theoretical analysis in [2], we can show that, the
moments of CF of the BDCT coefficient 2-D arrays will not
increase after data embedding, under the assumption that the
transformed hidden data are additive to and independent of the
cover image, and in such a distribution manner that the magnitude
of its characteristic function is non-increasing from 1 to N/2
(where N is the total number of value levels of BDCT coefficients).

2.1. Rake transform

The block discrete cosine transform has been widely used in
image/video compression applications due to its efficiency on
decorrelation and energy compaction. For example, 8×8 BDCT has
been adopted in JPEG and MPEG-2 (Moving Picture Experts
Group) standards.

We propose to use block discrete cosine transform with a set
of different block sizes in this novel steganalysis scheme. This is to
utilize the comprehensive decorrelation capability of BDCT with
various block sizes. Texture images are of regularity in pattern
arrangement and therefore of regularity in local frequency
distribution as well. Data embedding procedure changes the local
frequency distribution of the texture images. With various block
sizes, it is expected that this complicated frequency change can be
perceived in BDCT coefficients with different block sizes and
hence the data embedded in texture images may be detected with
features extracted from these BDCT’s. This expectation has been
verified in our experimental results.

The procedure of N×N BDCT is described as follows. Firstly,
the given image is divided into non-overlapping N×N blocks. Then,
2-D discrete cosine transform (DCT) is applied to each block
independently. Finally, we obtain a 2-D array consisting of BDCT
coefficients of all these blocks.

With each block size, we can obtain one 2-D array, from
which we can generate one subset of features. As shown in
Subsection 3.3, each feature subset associated with a specific block
size contributes to the steganalyzer, just like each reflected signal
contributes to the rake receiver to improve the SNR (signal to
noise ratio) of the received signal, which is widely used in wireless
communication applications. Therefore, we refer to these BDCT’s
with a set of block sizes as rake transform.
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Figure 1. Block diagram of feature generation: (a) block diagram,
(b) sub-block diagram for moment extraction

In this implementation, we choose the set of block sizes as
2×2, 4×4, 8×8, and 16×16 because this choice is of computational
benefits in implementing DCT. Our experimental investigation
also shows that this implementation gives similar performance to
that of the implementation with a set of block sizes from 2×2,
3×3, …, to 16×16. In fact, without 3×3, 5×5, …, 15×15,
performance change of the steganalyzer is not substantial.
Moreover, when we include block size 32×32, the performance of
the steganalyzer does not improve much but the computational
costs rise, which include those of feature calculation, training, and
testing. This is expected because the correlation between image
pixels has become rather weak as the distance between pixels is
too large.

Especially, when the proposed scheme applied to JPEG
images, the 8×8 BDCT coefficient 2-D array is replaced by the
JPEG coefficient (JPEG quantized 8×8 BDCT coefficient) 2-D
array. It is noticed that JPEG steganographic tools embed data to
the JPEG coefficients.

2.2. Prediction-error

In [2], a prediction-error image is used to reduce the influence
caused by the image content and enhance the noise introduced by
data hiding. The effectiveness of the prediction-error images on
steganalysis has been demonstrated in [2]. In this proposed
steganalyzer, we use a different prediction scheme.

a

cb

x

Figure 2. Prediction context
The prediction context is shown in Figure 2, i.e., we need to

predict the value of x using the values of its neighbors a, b, and c.
The prediction-error is given by
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ˆ ( ) { }.x x sign x a b c (1)
Experimental investigation shows that compared to that used

in [2] and [8], this prediction scheme can further improve
steganalysis performances on texture images.

2.3. Discrete wavelet transform (DWT)

Wavelet decomposition has demonstrated its efficiency in
steganalysis [1, 2]. For instance, the use of three-level wavelet
decomposition has been justified in [2]. To balance steganalysis
capability and computational complexity, we only conduct one-
level wavelet decomposition in this scheme. If we consider the
image, the BDCT coefficient 2-D array, or the JPEG coefficient 2-
D array as LL0, we have five subbands for one-level DWT
decomposition. Compared to three-level DWT decomposition, the
number of subbands reduces to 38%. Also, the Haar wavelet is
used due to its simplicity.

2.4. Moments and marginal moments

The moments of the CF’s are defined as:
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where ( )iH x  is the CF component at DFT frequency ix , N is the

total number of different value level in a subband under
consideration, i.e., DFT tap length, and 1,2,3n .

For each 2-D array, we generate four second-order histograms
(also referred to as 2-D histograms [8]) with the following
separations ( , ) 1, 0 , 1, / 2 , 1, / 4 , 1, / 4       , which
are called horizontal, vertical, diagonal, and minor diagonal 2-D
histograms, respectively. The two marginal moments of 2-D CF’s
are calculated by
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where ( , )i jH u v  is the 2-D CF component at DFT frequency

( , )i ju v , N is the total number of different value level in a 2-D

array under consideration, and 1,2,3n .

2.5. Classification

Support vector machine (SVM) is used as classifier in our
experimental work. To demonstrate the performance of a trained
classifier, the area under the receiver operating characteristics
(ROC) curve (AUC) [12] is used.

3. EXPERIMENTS AND RESULTS

798 texture images of 512×512 are used in our experimental
investigation. Among these images, 578 were downloaded from
the Internet [13, 14] and 220 were taken by a member of our
research group. All these images are raw images.

Various experimental works have been conducted and the
success of the proposed steganalyzer for texture images has been

verified. Constrained by space, experiments reported in this paper
focus on detecting generic LSB replacement, generic LSB
matching [7], spread spectrum image steganography (SSIS) [15],
generic quantization index modulation (QIM) [16], OutGuess [9],
F5 [10], and MB1 [11]. When applying those JPEG steganographic
tools, in order to avoid the effect on steganalysis caused by JPEG
double compression, we deliberately ensure that the difference
between a cover image and its associated stego image is caused
only by data embedding. The parameters used in our experiments
are shown in Table 1.

Table 1. Parameters of steganographic methods
Methods Steganographic tools Parameters
(1) LSB-R Generic LSB Replacement (*) 0.1bpp
(2) LSB-M Generic LSB Matching (*) 0.1bpp
 (3) SSIS SSIS 0.1bpp, SNR=40dB
 (4) QIM Generic QIM 0.1bpp, step=5

(5) OutGuess OutGuess 0.1bpc (**)
 (6) F5 F5 0.1bpc

 (7) MB1 MB1 0.1bpc, step=2
* both the embedding position and the to-be-embedded data are
randomly selected
** bits per non-zero AC (alternating current) coefficient

For comparison purpose, we generate features from the cover
and the stego images with Farid’s method [1] (hereinafter Farid’s),
Shi et al.’s method [2] (hereinafter Shi et al.’s), and our proposed
method (hereinafter Proposed) to train and test the SVM classifier.
For JPEG images, we also generate features with Chen et al.’s
method [8] (hereinafter Chen et al.’s).

The SVM codes in MATLAB are downloaded from [17] and
the polynomial kernel with degree 2 is used. At the training stage,
5/6 randomly selected cover/stego image pairs are used. The
remaining 1/6 pairs are used for test. To eliminate the effect caused
by image selection in training and test, we conduct 20 independent
and random experiments and then average the experimental results.

3.1. Detecting data hidden in raw images

Firstly we conduct experiments on detecting data hidden in raw
texture images (TXT in Table 2). To evaluate the performance of
the proposed scheme on general smooth images, we also conduct
experiments on the CorelDraw image dataset (CD in Table 2). The
average AUC’s of these experiments are reported in Table 2.
Obviously, our proposed scheme outperforms Farid’s and Shi et
al.’s by a significant margin on texture images and also
outperforms those two steganalyzers on CorelDraw images.

Table 2. Results on texture and CorelDraw images (AUC); TXT
means texture images; CD means CorelDraw images

Farid’s Shi et al.’s ProposedSteg.
Methods TXT CD TXT CD TXT CD

(1) LSB-R 0.5483 0.7168 0.5849 0.9790 0.8173 0.9914
(2) LSB-M 0.5467 0.7224 0.5727 0.9782 0.8017 0.9916

(3) SSIS 0.9802 0.9920 0.9089 0.9932 0.9853 0.9943
(4) QIM 0.9831 0.9943 0.8388 0.9935 0.9914 0.9945

3.2. Detecting data hidden in JPEG images

Our proposed scheme works not only on raw images, but also on
JPEG images. Shown in Table 3 are the results on detecting JPEG
steganographic methods 5, 6, and 7 applied to 798 JPEG texture
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images. For comparison purpose, we also give the performance of
method Chen et al.’s. It can be seen that the performance of our
proposed scheme is not only much better than that of Farid’s and
Shi et al.’s, but also better than that of Chen et al.’s.

Table 3. Results on 798 JPEG texture images (AUC)
Steg. Methods Farid’s Shi et al.’s Chen et al.’s Proposed
 (5) OutGuess 0.6968 0.5709 0.8693 0.9382

 (6) F5 0.5250 0.5517 0.7211 0.7481
 (7) MB1 0.5302 0.5305 0.6631 0.7566

3.3. Demonstrating the effect of rake transform

The proposed scheme uses 270-D features. The first 54 feature
components are derived from the spatial representation. The
second, third, fourth, and fifth are derived from BDCT
representation  with block size 2×2, 4×4, 8×8 (JPEG coefficient 2-
D array for JPEG images), and 16×16, respectively. Experimental
results using part of and all of these features are given in Table 4.
In this table, “54-D” means only the first 54 feature components
(from the spatial representation) are used, “108-D” means the first
and the second 54 feature components (from the 2×2 BDCT) are
used, and so on.

It is observed that each of the BDCT’s makes contribution to
our proposed steganalyzer. Moreover, the more the BDCT (up to
16×16) included, the better the steganalysis performance. For raw
images, it seems that the steganalyzer gives similar performance
with 16×16 BDCT to that without 16×16 BDCT. However, 16×16
BDCT does enhance the steganalyzer’s performance on JPEG
images significantly.

Table 4. Results on 798 texture images (AUC)
Steg. Methods 54-D 108-D 162-D 216-D 270-D

 (1) LSB-R 0.6665 0.7163 0.7635 0.8129 0.8173
 (2) LSB-M 0.5877 0.6327 0.7196 0.7931 0.8017

 (3) SSIS 0.8423 0.8874 0.9604 0.9829 0.9853
(4) QIM 0.7974 0.8579 0.9098 0.9900 0.9914

 (5) OutGuess 0.5459 0.5542 0.5794 0.8976 0.9382
 (6) F5 0.5345 0.5370 0.5474 0.6758 0.7481

 (7) MB1 0.5368 0.5275 0.5504 0.6531 0.7566

4. SUMMARY

In this paper, we have proposed a novel universal steganalysis
scheme and demonstrated the effectiveness of this scheme. This
paper is summarized as follows:

(1) The difficulty in steganalyzing texture images has been
reported and analyzed.

(2) The proposed universal steganalysis scheme greatly
improves the capability in detecting data hidden in raw texture
images. It also works quite well on general smooth images, e.g.,
the CorelDraw images. Our experiments have shown this scheme
outperforms the state-of-the-art universal steganalyzers on both
texture images and general smooth images. Therefore, it is an
effective universal steganalyzer.

(3) The proposed steganalysis framework combines the
features from the spatial representation and rake transform
(referred to as block discrete cosine transforms with a set of
various block sizes) representation. It also combines features from
the 1-D characteristic function and features from the 2-D
characteristic function.

(4) The proposed steganalysis scheme uses moments of 1-D
characteristic functions and discrete wavelet transform, which are
used in [2, 8], and marginal moments of 2-D characteristic
functions, which are used in [8]. Furthermore, the proposed
scheme utilizes features derived from rake transform, which make
the proposed scheme more effective than that in [2] and [8].

(5) The prediction method used in this proposed steganalysis
scheme, compared to that used in [2] and [8], also improves
steganalysis performances.

(6) In addition, one-level DWT decomposition greatly
reduces the computational complexity by reducing feature
dimensionality compared to three-level DWT decomposition used
in [2] and [8].
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