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ABSTRACT
A popular color management standard for controlling color

reproduction is the ICC color profile. The core of the ICC

profile is a look-up-table which maps a regular grid of device-

independent colors to the printer colorspace. To estimate the

look-up-table from sample input-output colors, local linear

regression has been shown to work better than other meth-

ods. An open problem in local linear regression is how to de-

fine the locality or neighborhood for each of the local linear

regressions. In this paper, new adaptive neighborhood def-

initions and regularized local linear regression are proposed

to address this problem. The adaptive neighborhood defini-

tions enclose the test sample, and are motivated by a result

showing they yield bounded estimation variance. An experi-

ment shows that both regularization and the proposed neigh-

borhoods can lead to a significant reduction in error.

Index Terms— color management, linear regression, reg-

ularization, printers

1. INTRODUCTION

Color management is the term for actively managing how col-

ors are processed and rendered across different devices, such

as scanners, monitors, and printers. The goal is to repro-

duce colors accurately, or in an otherwise controlled manner.

Color management of printers is difficult because printers are

nonlinear devices, and the colors they produce depend on the

printer hardware, the halftoning method, the ink or toner, pa-

per type, humidity, and temperature [1, 2].

A common approach to the color management of printers

is an empirical characterization of the way the device trans-

forms the device-dependent input colors (i.e. RGB) to printed

device-independent colors (i.e. CIELab). First, sample (RGB,

CIELab) pairs for the device are obtained by printing RGB

patches and measuring the printed patches as CIELab colors.

Based on these sample pairs, a multi-dimensional look-up ta-

ble (LUT) is estimated. The LUT defines directly how colors
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on the grid are modified, and indirectly (by interpolation of

the LUT values) how non-grid colors are modified. The LUT

is stored in a standardized format known as an ICC profile,

which was developed by the International Color Consortium.

ICC profiles are a widely-adopted standard for characterizing

and correcting color changes between devices [2]. Color man-

agement modules that process ICC profiles are implemented

in many common hardware and software systems [2].

It is challenging to accurately estimate the color manage-

ment LUT from the sample (RGB, CIELab) pairs that are

measured for a particular printer. For this estimation prob-

lem, local linear regression has been shown to work better

than neural networks, polynomial regression, and splines [1],

and better than color management techniques using models of

ink-substrate interactions [3]. We propose using a regularized

local linear regression, which is discussed in Section 2. An

open issue in local linear regression is how to define an ap-

propriate local neighborhood for each test point. In Section 3

we consider neighborhoods for local linear regression that au-

tomatically adapt to the spatial distribution of the data and do

not require cross-validation. The neighborhoods investigated,

which we term enclosing neighborhoods, enclose a test point

in the convex hull of the neighborhood, ensuring that extrap-

olation is avoided in favor of interpolation when possible. We

motivate the use of enclosing neighborhoods by showing they

result in bounded variance of the regression estimate. In Sec-

tion 4 and 5 we detail a color management experiment and

results showing that both the proposed enclosing neighbor-

hoods and regularizing linear regression can yield significant

improvements for the color management of printers.

2. LOCAL LINEAR REGRESSION

For a given printer, denote a training set of measured out-

put CIELab colors {xi}i=1,...,N and the corresponding input

RGB colors {yi}i=1,...,N , where the printer accepts input im-

ages in RGB. For a grid point g of the LUT, representing a

desired output CIELab color, we would like to find the RGB

color ŷ that is an estimate of the input RGB color y that pro-

duces the desired CIELab color g.
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For each gridpoint in the LUT, local linear regression fits

the least-squared error hyperplane to a set of neighbors of the

gridpoint. Each output color component is estimated sepa-

rately. For example, let ŷR denote the red component of ŷ,

and let yiR
denote the red component of the ith training color

yi. Suppose Jg is a set of indices of training samples in a

neighborhood of g. Then the local linear regression estimate

is ŷR = β̂T g + β̂0, where

(β̂, β̂0) = arg min
(β,β0)

∑

i∈Jg

(
yiR

− βT xi − β0

)2
. (1)

There are a number of factors to consider when choosing

the neighborhood Jg . If neighborhoods are too large, the re-

gression is too smooth and does not accurately represent the

color mapping of the printer. Conversely, if neighborhoods

are too small, the locally-fitted hyperplane estimations can be

ill-posed and hence inaccurate.

One way to mitigate ill-posed estimation when using a

small neighborhood is by regularizing the local linear regres-

sion. A common form of regularized local linear regression is

ridge regression [4], which forms a hyperplane fit as in equa-

tion (1), but the ridge regression coefficients β̂ridge also min-

imize a penalized least-squares criteria that discourages fits

with steep slopes, forcing a smoother regression. To estimate

the red color component (for example), the local ridge regres-

sion coefficients solve

(
β̂ridge, β̂0

)
= arg min

(β,β0)

∑

i∈Jg

(
yiR

− βT xi − β0

)2
+λβT β,

(2)

where the parameter λ controls the trade-off between mini-

mizing the error and penalizing the magnitude of the coef-

ficients. Larger λ results in lower estimation variance but

higher estimation bias.

3. ENCLOSING NEIGHBORHOODS

In local learning it is common to use k nearest-neighbors

for the neighborhood, where k is chosen by cross-validation.

In color management, cross-validating is expensive and im-

practical in many workflows. Using a fixed small neighbor-

hood size can be expected to have high estimation variance,

whereas using a fixed large neighborhood size is likely to

have high estimation bias. In this paper, we consider neigh-

borhoods that do not require cross-validation and that are de-

signed to enclose the test point in the convex hull of the neigh-

borhood when possible.

Definition: An enclosing neighborhood for a test point g is a

set of training points {xj}j∈Jg
from which g can be formed as

a convex combination. That is, there exist weights {wj}j∈Jg ,

wj ∈ [0, 1],
∑

j∈Jg
wj = 1 such that g =

∑
j∈Jg

wjxj .

Note that when g falls outside the convex hull of {xj}j∈Jg
,

then an enclosing neighborhood cannot be found. Examples
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Fig. 1. Left: The natural neighbors of g are {xi}i=1,2,3,4,6,7.

Right: The enclosing k-NN neighbors of g are {xi}i=1,...,6.

of two different neighborhoods that are enclosing when pos-

sible are shown in Fig. 1.

The following proposition shows that the estimation vari-

ance using linear regression over an enclosing neighborhood

results in bounded estimation variance if the underlying map-

ping is well-modeled by a locally linear trend with finite vari-

ance perturbations.

Theorem: Consider a test point g ∈ �p and training points
{xi}i∈Jg

∈ �
p. Suppose g and each xi are drawn inde-

pendently and identically from a continuous distribution. Let
f(x) = aT x + a0 + n where a ∈ �p, a0 ∈ �, and n ∼
N (0, σ2). Given sample pairs {xi, f(xi)}, consider the lin-
ear estimate f̂(g) = β̂T x + β̂0, where (β̂, β̂0) solve (1) with
yiR

= f(xi). Then if {xj}j∈Jg
is an enclosing neighbor-

hood, the estimation variance is bounded:

E[ ( f̂(g) − E[ f̂(g) ] )2 ] ≤ σ2.

The proof is omitted due to lack of space.

3.0.1. Natural Neighbors

Let V be the Voronoi tessellation of the complete set of train-

ing points and test point g. The natural neighbors of g are

defined to be those training points whose Voronoi cells are

adjacent to the cell containing g. Sibson’s local coordinates
property of the natural neighbors [5] can be used to prove that

the natural neighbors form an enclosing neighborhood when

the test point is contained in the convex hull of the training

set. To the authors’ knowledge, this is the first application of

natural neighbors as a neighborhood for linear regression.

3.0.2. Enclosing k-NN neighborhood

Given a test point g and a set of training sample indices Jg , we

define the distance to enclosure D(g,Jg) to be the Euclidean

distance between g and the convex hull of the set indexed by

Jg . That is,

D(g,Jg) = min
w

‖
∑

j∈Jg

wjxj − g‖2, (3)
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where w ∈ [0, 1]|Jg| and
∑

j∈Jg
wj = 1. Note that if g is in

the convex hull of the neighborhood Jg , then D(g,Jg) = 0.

Let Jg(k) be the k nearest neighbor indices of g. If there are

N training sample pairs, then it must be that D(g,Jg(N))
is the minimal achievable distance to enclosure. Let K be

the set of all k such that D(g,Jg(k)) = D(g,Jg(N)). We

define the enclosing k-NN neighborhood to be the fewest k-

nearest neighbors that achieves the minimal distance to en-

closure. That is, let the enclosing k-NN neighborhood be

Jg(k∗), where

k∗ = min
k∈K

k. (4)

This neighborhood definition is related to one previously

proposed by one of the authors [6], which defined the neigh-

borhood as the smallest number of neighbors needed to en-

close the test sample, and if no set of neighbors could en-

close the test sample, the neighborhood was the nearest kmax

neighbors, with kmax some pre-set value.

4. EXPERIMENT

A standard color management system is shown in Fig. 2: a 3D

LUT characterizes the device, followed by parallel 1D LUTs

on each channel that pre-linearize the device channels inde-

pendently [1]. These LUTs are estimated from the set of train-

ing color pairs (see Section 2 for more details on the training

color pairs). For our experiments we used the 918 sample

Chromix chart for training (available from www.chromix.com),

which consists of 729 uniformly spaced samples in the printer’s

input RGB colorspace and 189 additional neutrals and highly

saturated primaries.

g
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1D LUTG
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R'

B'

Printer
g'

Fig. 2. Color management: A desired CIELab color g is trans-

formed to an appropriate RGB color to input to a printer in

order to print out a patch with CIELab color g’ that approxi-

mates g.

The 1D LUTs enact gray-balance calibration, linearizing

each channel and enforcing that neutral RGB color values

(R=G=B=d) print gray patches (as measured in CIELab). The

LUTs map the integers from 0 to 255 to the test colors’ es-

timated R’G’B’ colors so that if one inputs the RGB color

(d, d, d) for some integer d ∈ [0, 255], the 1D LUTs will out-

put R’G’B’ values that correspond to uniformly-spaced neu-

tral gray steps in CIELab space.

The 3D LUT characterizes the transformation from input

to measured output of the printer. For the 3D LUT in our ex-

periment, we used a 17× 17× 17 grid that spans the CIELab

color space with L∗ ∈ [0, 100] and a∗, b∗ ∈ [−100, 100]. Pre-

vious studies have shown that a finer sampling than this does

not yield a noticeable improvement in accuracy [1]. To con-

struct the 3D LUT, the input RGB colors must be first be ad-

justed since the training (RGB,CIELab) pairs were obtained

without the linearization performed by the 1D LUTs. This

is done by creating inverse 1D LUTs (using 1D linear inter-

polation on each LUT) and passing each RGB value through

the three inverse 1D LUTs to produce an adjusted RGB value.

Thus, when the 1D LUTs are inserted before the printer, the

pairs of adjusted RGB values and measured CIELab values

act as training samples for the system described by the 1D

LUTs and the printer. The pairs of adjusted RGB values and

measured CIELab values are used to estimate the 3D LUT.

The 1D LUT is constructed by local linear regression for

each of the 255 evenly spaced CIELab gray values. For each

grid point g of the 1D LUT, a neighborhood of CIELab col-

ors is calculated. Regression for R, G, and B is done sepa-

rately over g’s neighborhood, yielding three locally-fitted hy-

perplanes for R, G, and B. Each hyperplane is then evaluated

at g to estimate the R’G’B’ 1D LUT output color for that grid

point.

The 3D LUT is constructed in a similar fashion, with g
drawn from the 17 × 17 × 17 CIELab grid, g’s neighbors

calculated, and the adjusted RGB values used as the outputs

in the regression.

For each neighborhood method, all of the LUTs were es-

timated using either local linear regression or local ridge re-

gression with ridge regularization parameter λ = .1. This

λ value was chosen to minimize RGB error in a small pre-

liminary experiment and is a robust parameter (that is, small

changes in λ have little effect). The different enclosing neigh-

borhood methods were compared to a baseline neighborhood

of 15 nearest neighbors, which is a neighborhood size for

this application that has worked well in other experiments

[7]. Also implemented was a variation of the enclosing k-

NN neighborhood that used a minimum of k = 15 neigh-

bors, that is, nearest neighbors were added to the enclosing

k-NN neighborhood until there were fifteen neighbors if the

enclosing k-NN neighborhood had fewer than fifteen neigh-

bors. More generally, to avoid severely ill-posed estimation,

if any neighborhood consisted of fewer than four neighbors,

then nearest neighbors were added to make a minimum of

four neighbors.

The different neighborhoods and regression methods were

tested on a Ricoh Aficio 1232C (laser engine) printer. Color

measurements of the printed patches were done with a Gre-

tagMacbeth Spectrolino spectrophotometer at a 2◦ observer

angle with D50 illumination.

To ensure that all test samples are in gamut of the printer,

729 RGB test color values were drawn randomly and uni-

formly from the RGB colorspace, printed, and then the printed

color patches were measured in CIELab. These measured

CIELab values were used as the test samples for each neigh-
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borhood and estimation method. That is, the measured CIELab

values were input into the system shown in Fig. 2 where the

LUT’s were estimated by some combination of neighborhood

method and regression method. Given a test sample, the es-

timated LUT is interpolated using trilinear interpolation [8].

The 729 test color samples produced by each estimated LUT

were input to the printer, printed, measured in CIELab, and

the ΔE∗
94 error (a standard for measuring color management

error [1]) was computed with respect to the input CIELab val-

ues.

5. RESULTS

Table 1 shows the average error, the 95th percentile error, and

the maximum error for the Ricoh printer for each neighbor-

hood definition and both linear and ridge regression. The

baseline comparison is the k = 15 neighbors with local lin-

ear regression. In color management, small errors may not be

noticeable, but even one large error may be objectionable, so

the maximum error and 95th percentile errors are important

metrics.

Table 1. ΔE∗
94 Errors for Ricoh Aficio 1232C

Regression Method Average
Error

95%-ile
Error

Max
Error

Enclosing Linear 4.27 8.47 53.83

k-NN Ridge 3.66 7.38 20.63

Enclosing Linear 4.03 8.30 12.43

k-NN; k ≥ 15 Ridge 3.45 6.77 10.78

Natural Linear 3.74 7.55 9.96
Neighbors Ridge 3.69 7.10 10.23

k = 15 Linear 4.41 9.84 17.66

Neighbors Ridge 4.16 8.61 13.00

Using ridge regression with 15 neighbors eliminates 26%
of the maximum error, and is seen to reduce error compared

to linear regression throughout the results. Also, all of the en-

closing neighborhoods result in lower average error and lower

95th percentile error than the baseline of 15 neighbors and lin-

ear regression. The lowest average error and lowest 95th per-

centile error is produced by the enclosing k-NN with a mini-

mum of 15 neighbors and ridge regression: its 95th percentile

error is 20% smaller than 15 neighbors with ridge regression,

and 45% smaller than the baseline 15 neighbors with lin-

ear regression. The natural neighbors with linear regression

achieves the lowest maximum error, 44% lower than the 15

neighbors with linear regression. The enclosing k-NN neigh-

borhood was occasionally too small to ensure well-posed lin-

ear regression causing a high maximum error, but still has

lower average and 95th percentile error than the baseline.

6. DISCUSSION

The experiments show that using an enclosing neighborhood

is an effective alternative to using a fixed neighborhood size.

In particular, the enclosing k-NN neighborhood with a min-

imum of 15 neighbors and ridge regression achieved a 39%
reduction in the maximum error, and the lowest average and

95th percentile error rates, resulting in error reductions of

10% and 15%, respectively. These enclosing neighborhoods

may also be useful in other applications where it is difficult to

cross-validate a neighborhood size. Enclosing neighborhoods

may perform better than cross-validated k-nearest neighbors

for local learning because the neighborhood size varies auto-

matically, rather than being fixed. Enclosing neighborhoods

limit the estimation variance when the underlying function

does have a (noisy) linear trend.

The experiments also showed that regularized linear re-

gression can yield strong improvements for this application

over linear regularization.
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