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ABSTRACT

The search for alias-free sampling lattices for a given frequency
support, in particular those lattices achieving minimum sam-
pling densities, is a fundamental issue in various applications
of signal and image processing. In this paper, we propose an
efficient computational procedure to find all alias-free integral
sampling lattices for a given frequency support with minimum
sampling density. Central to this algorithm is a novel condition
linking the alias-free sampling with the Fourier transform of the
indicator function defined on the frequency support. We study
the computation of these Fourier transforms based on the diver-
gence theorem, and propose a simple closed-form formula for
a fairly general class of support regions consisting of arbitrary
N -dimensional polytopes, with polygons in 2-D and polyhedra
in 3-D as special cases. The proposed algorithm can be useful
in a variety of applications involving the design of efficient ac-
quisition schemes for multidimensional bandlimited signals.

Index Terms— Densest sampling, critical sampling, pack-
ing, tiling, maximal decimation.

1. INTRODUCTION

Sampling is a cornerstone of multirate signal processing. The
classical sampling theorem [1] states that a one-dimensional
bandlimited signal can be exactly reconstructed from its sam-
ples if the sampling rate is beyond the Nyquist rate. The situ-
ation is similar in multidimensional cases. In general, the ef-
fect of the sampling process in the frequency domain is that
the spectrum of the original signal gets replicated over a lattice
whose density is inversely proportional to the sampling density.
If the shifted copies of the spectrum do not overlap with the
baseband, then we have an alias-free sampling; consequently,
the original signal can be reconstructed from its downsampled
version by applying an ideal interpolation filter supported on
the baseband.

The search for alias-free sampling lattices for a given fre-
quency support, and in particular those lattices achieving min-
imum sampling densities, is a fundamental issue in various ap-
plications involving the design of efficient acquisition schemes

This work was supported by the US National Science Foundation under
Grant CCR-0237633 (CAREER).

for bandlimited signals. While this problem can be solved in 1-
D via visual inspection, it becomes very challenging in higher
dimensions. A special case of alias-free sampling, i.e., max-
imal decimation, is also important in the design of critically-
sampled filter banks [2].

In this paper, we propose a computational procedure that,
when given the Fourier transform [denoted by �̂X (ω)] of the
indicator function defined on the frequency support region X ,
can find all alias-free integral sampling lattices for X with the
minimum density. Central to this algorithm is a novel condition
linking the alias-free sampling with the value of �̂X (ω) at inte-
gral points. To systematically investigate all possible sampling
geometry, we describe and employ the Hermite normal form,
which provides a complete characterization for all integral lat-
tices. Since the usefulness of the proposed algorithm depends
on whether we can calculate �̂X (ω), we study the computa-
tion of this function based on the Gauss divergence theorem.
In particular, we provide a simple closed-form formula for a
fairly general class of support regions consisting of arbitrary
N -dimensional polytopes, with polygons in 2-D and polyhe-
dra in 3-D as special cases.

The rest of the paper is organized as follows. In Section 2,
we first briefly review some relevant concepts in the sampling
of bandlimited signals, and then state precisely the problems
we want to address in this work. We propose in Section 3
a novel condition linking the alias-free sampling (as well as
maximal decimation) with the Fourier transform of the indi-
cator function defined on the given frequency support. Sec-
tion 4 presents a computational algorithm that can efficiently
determine all suitable integral sampling lattices for a given fre-
quency support at the minimum sampling density. We con-
clude the paper in Section 5. Due to space limitations, we only
present the proofs for the most important results in this paper,
and leave the proofs for all other results to [3].

Notations: Throughout the paper, N represents the dimen-
sion of the signals. We use |M | to represent the absolute value
of the determinant of a matrix M . For a function f(t), its
Fourier transform is written as f̂(ω). Calligraphic letters, such
as X , represent open domains in the N -dimensional (N -D)
space, with m(X ) being the Lesbegue measure (volume) of X .
Finally, �X (t) represents the indicator function defined on X ,
i.e., �X (t) = 1 if t ∈ X and �X (t) = 0 otherwise.
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2. BACKGROUND AND PROBLEM STATEMENT

2.1. Sampling on Lattices

In multidimensional multirate signal processing, the sampling
operations are defined on lattices, each of which is represented
by an N × N nonsingular matrix M as

LAT(M) = {Mn : n ∈ Z
N}.

In this paper, we focus on discrete-time signals, and hence we
further require that the sampling matrix M always be integer-
valued. However, most of the results presented here apply to
the sampling of continuous-time signals as well [3].

For an M -fold sampling, the input x[n] and the output

y[n] def= x[Mn] are related in the Fourier domain as [4]

Y = MT
⋃

n∈ZN

(X + 2πM−T n). (1)

where X is the frequency-domain support of the input signal
x[n] within (−π, π]N , and Y is the frequency domain support
of y[n].

It follows from (1) that the frequency support Y of the
downsampled signal can be obtained by first taking the union
of all shifted copies (i.e. alias components) of X , whose ori-
gins are moved to points on the lattice LAT(2πM −T ), and
then applying a linear mapping M T .

Definition 1 We say a frequency support X ⊆ (−π, π]N al-
lows an alias-freeM -fold sampling, if different shifted copies
of X in (1) are disjoint, i.e., for all n1 �= n2 ∈ Z

N ,

(X + 2πM−T n1) ∩ (X + 2πM−T n2) = ∅. (2)

Furthermore, we say X can be maximally decimated by M ,
if aside from the alias-free condition in (2), the union of the
shifted copies also covers the entire spectrum, i.e.,⋃
n∈ZN

(X + 2πM−T n) = R
N , up to a set of measure zero.

2.2. Problem Statement

The sampling density of a matrix M is defined as ρM = 1/|M |,
which is the number of samples retained per unit volume. It
is well-known [4] that the lower bound of sampling density
for alias-free sampling is m(X )/(2π)N , where m(X ) is the
volume of the support region X ; meanwhile, this bound is
achieved when X can be maximally decimated. Therefore, the
first problem we want to address in this paper is as follows.
Problem 1: Given a frequency support X , can it be max-

imally decimated by an integral matrix? And if yes, what are
the corresponding sampling matrices?

Apparently not all frequency support shapes can be maxi-
mally decimated (e.g. consider a disc-shaped region in 2-D).
Hence, the second and more general problem is:
Problem 2: Given a frequency supportX , what is the achiev-

able minimum sampling density for alias-free sampling by us-
ing integral matrices? How do we efficiently find all integral
matrices achieving this minimum density?

3. STUDY OF ALIAS-FREE SAMPLING USING
FOURIER TECHNIQUES

In this section, we study the problems of alias-free sampling
and maximal decimation based on Fourier analysis. The key
observation is a link between the alias-free sampling condition
with the Fourier transform of the indicator function �X (t) de-
fined on the support X .

For a given support X , consider the autocorrelation func-
tion RX (t) =

∫
�X (u)�∗

X (u − t) du and define a quantity

OX ,M
def=

∑
n �=0

RX (2πM−T n), (3)

which can be interpreted as the total volume of overlapping re-
gions between the original support X and all its aliasing com-
ponents.

Lemma 1 A frequency region X allows an M -fold alias-free
sampling, if and only if OX ,M = 0.

Proof: By construction, RX (t) ≥ 0 for all t; thus OX ,M = 0
if and only if RX (2πM−T n) = 0 for all n ∈ Z

N \{0}, which
is equivalent to the alias-free condition given in (2).

Theorem 1 A frequency regionX allows an M -fold alias-free
sampling, if and only if∑

n∈ZN

|�̂X (Mn)|2 ≤ (2π)N

|M | m(X ). (4)

Proof: From the definition of RX (t), its Fourier transform is
R̂X (ω) = |�̂X (ω)|2. Applying the Poisson summation for-
mula, we have∑

n∈ZN

RX (2πM−T n) =
|M |

(2π)N

∑
n∈ZN

R̂X (Mn)

=
|M |

(2π)N

∑
n∈ZN

|�̂X (Mn)|2.

The overlapping term OX ,M can then be calculated as

OX ,M =
∑

n∈ZN

RX (2πM−T n) − RX (0)

=
|M |

(2π)N

∑
n∈ZN

|�̂X (Mn)|2 − m(X ), (5)

where in reaching (5) we have also used the fact that RX (0) =
m(X ). It follows from (5) that the inequality (4) is equivalent
to having OX ,M ≤ 0. On the other hand, we always have
OX ,M ≥ 0 from definition. Therefore, OX ,M = 0 and we can
then apply Lemma 1.

Corollary 1 Suppose M is an alias-free sampling matrix for
X , then the sampling density ρM satisfies

ρM
def
=

1
|M | ≥

m(X )
(2π)N

. (6)

The above lower bound is achieved if and only if X is maxi-
mally decimated by M .
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Fig. 1. (a) The ideal frequency domain support of one of the
subbands from a 3-level directional filter bank. (b) The values
of �̂X (ω) at integer points. Black dots represent zero values;
white dots represent nonzero values.

The above lower bound on sampling density is a well-known
result in multirate signal processing [4], but is usually proved
by geometric arguments. By combining the results of Theo-
rem 1 and Corollary 1, we can derive a simpler set of conditions
for the special case of maximal decimation as follows, which
was originally proposed in [5].

Theorem 2 A frequency support X can be maximally deci-
mated by a matrix M if and only if

�̂X (0) =
(2π)N

|M | and �̂X (Mn) = 0 for all n ∈ Z
N\ {0}.

(7)

Example 1 Figure 1(a) shows the ideal wedge-shaped frequency
support X of one directional filter bank [2] subband. Illus-
trated in Figure 1(b) are the values of �̂X (n1, n2) at integer
points for 0 ≤ n1 ≤ 8 and −4 ≤ n2 ≤ 4, with black dots rep-
resenting the locations where �̂X (n1, n2) = 0. We can observe
that the zero set contains a lattice generated by the diagonal
matrix M = diag(4, 2), and hence M is a suitable candidate
for maximal decimation. Actually, we can use the expression
for �̂X (ω) to show that M indeed satisfies both conditions in
(7). This matches the result previously obtained from the con-
struction of the filter bank [2].

4. FINDING MINIMUM SAMPLING LATTICES

Based on the result of Theorem 1, we propose in this section
a computational procedure that can efficiently determine the
minimum sampling lattices for a given frequency support.

4.1. Characterization of Integral Lattices

Given a frequency support X , we can first calculate its vol-
ume. We know from Corollary 1 that the integral matrix M

for alias-free sampling must satisfy |M | ≤
⌊

(2π)N

m(X )

⌋
, where


α� is the largest integer smaller than or equal to a real num-
ber α. Although there is an infinite number of integral matrices
satisfying this condition, we only need to check a finite number
of them, as ensured by the following result:

Proposition 1 A matrix M is an alias-free sampling matrix
for a frequency support X , if and only if M U is an alias-free
sampling matrix for X , where U is an arbitrary unimodular
matrix (i.e. integral matrix with |U | = 1). The same is true for
maximal decimation.

For two integral matrices M and P , the relation M ∼ P ,
defined as P = M U for some unimodular matrix U , is an
equivalence relation. Therefore, the corresponding equivalence
classes form a partition of the set of all integral matrices whose
determinants have the same absolute value. Proposition 1 im-
plies that, for each equivalent class, we just need to pick a rep-
resentative matrix from that class, and see if it forms an alias-
free sampling (or maximal decimation). The result then carries
over to all members in the equivalent class. The following re-
sult [6] provides a complete characterization for all representa-
tive matrices.

Theorem 3 (Hermite normal form) For every integral matrix
M , there is a unique integral matrix H , such that M ∼ H
and H = [hi,j ]1≤i,j≤N is in the Hermite normal form, i.e.,

1. H is upper triangular;

2. hi,i ≥ 0 and 0 ≤ hi,j < hi,i (j > i; 1 ≤ i ≤ N).

From definition, it is straightforward to construct all Her-
mite normal matrices with a given determinant. For example,
when N = 2 and the determinant is equal to 3, there are a total
of four such matrices:(

1 0
0 3

)
,

(
3 0
0 1

)
,

(
3 1
0 1

)
, and

(
3 2
0 1

)
.

In general, we can show [3] that, for a given determinant
δ, the total number of Hermite normal matrices with that deter-
minant is less than 22 δN−1+0.001. This implies that, in lower
dimensions cases (e.g. N = 2, 3) and when δ is small, we just
need to check a relatively small number of candidate sampling
matrices.

4.2. The Fourier Transform of Indicator Functions

The usefulness of condition (4) proposed in Theorem 1 de-
pends on whether we can calculate �̂X (ω). In general, this has
to be decided on a case by case basis, according to the shape of
X . However, for a fairly large of class of support shapes con-
sisting of N -D polytopes, we can have a simple closed-form
formula for �̂X (ω).

Consider a vector-valued function Fω(t) = j ω
‖ω‖2 e−j ω·t,

where ω �= 0 is a fixed parameter. It is easy to verify that
div Fω(t) = e−j ω·t, where div Fω(t) is the divergence of the
function. Applying the Gauss divergence theorem, we have

�̂X (ω) def=
∫
X

e−j ω·t dt =
∫
X

div Fω(t) dt

=
j

‖ω‖2

∫
∂X

ej ω·t (ω · nt) dSt, (8)
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for any ω �= 0, where ∂X is the boundary of X oriented by
outward-pointing unit normal vectors nt.

If X is a polygon in 2-D, then ∂X is made of a finite num-
ber of line segments. By using (8), we can simplify the compu-
tation of �̂X (ω) from a volume integration to a finite number
of 1-D line integrations, which allow for a simple closed-form
expression as follows:

Theorem 4 Suppose X is a 2-D polygon with K sides. For
any ω �= 0,

�̂X (ω) =
1

‖ω‖2

K∑
k=1

ω · nk

ω · θk

(
e−j ω·pk − e−j ω·qk

)
,

where pk and qk are the two vertices of the kth side; θk =
qk−pk

‖qk−pk‖ is the unit tangent vector pointing from pk to qk; and
nk is the outward-pointing unit normal vector of the kth side.

The higher dimensional cases for polyhedra and polytopes
can be done in a similar fashion, and we leave the details to [3].

4.3. Algorithm

For a given frequency support regionX , if �̂X (ω) can be com-
puted, we can then use the following computational procedure
to determine the minimum alias-free sampling lattices for X .

1. Compute (2π)N

m(X ) , and start with the largest possible deter-

minant, i.e., set d =
⌊

(2π)N

m(X )

⌋
.

2. From the definition given in Theorem 3, construct a list
of all Hermite normal matrices with determinants d.

3. For each matrix M in the above list, check

∑
n∈ZN , ‖n‖≤L

|�̂X (Mn)|2 ≤ (2π)N

|M | m(X ), (9)

where L is a predetermined number defining the range of
computation.

4. If (9) is not satisfied by any matrix in the list, set d =
d − 1 and go back to Step 2.

5. Otherwise, present all the matrices in the current list sat-
isfying (9). Furthermore, if the current value of d is equal

to (2π)N

m(X ) , then we have maximal decimation.

Note that we can only compute a finite sum in (9), instead of
the infinite sum as required in (4). Therefore, (9) is only a
necessary condition for M to be an alias-free sampling matrix
of X . However, by appropriately choosing the search range
L, we can make sure that the overlapping term OX ,M [see (3)]
for the reported matrices, if not exactly zero, is still less than an
arbitrarily small amount. We leave the details of how to choose
L to [3].

t1

t2 (π, π)

−(π, π)

Fig. 2. The ideal frequency support of one contourlet subband.

Example 2 Figure 2 shows the ideal frequency domain sup-
port of one directional multiresolution subband from the con-
tourlet transform [7]. Since (2π)2/m(X ) = 16/3 ≈ 5.33,
we know from Corollary 1 that X cannot be maximally deci-
mated by any integral matrices. Meanwhile, for any alias-free
sampling matrix M for X , we must have |M | ≤ 5.

SinceX is a polygonal region, we can easily calculate �̂X (ω)
from Theorem 4. Applying the algorithm proposed above, we
find the achievable minimum sampling density for X is 1/4,
obtained by the following matrices(

1 0
0 4

)
,

(
2 0
0 2

)
,

(
4 1
0 1

)
, and

(
4 2
0 1

)
,

which represent four distinctive lattices.

5. CONCLUSION

In this paper, we proposed a novel condition linking the alias-
free sampling of a given frequency region with the Fourier
transform of the indicator function defined on that region. For
cases when the above Fourier transform can be computed, we
propose an efficient algorithm to find all integral lattices that
can sample the given frequency support with minimum sam-
pling density. We envision that the proposed condition and
computational procedure can be used in a wide range of ap-
plications involving the design of efficient acquisition schemes
for multidimensional bandlimited signals.
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