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ABSTRACT

This paper discusses the disadvantages of several existing objective
quality evaluation methods for frame interpolation techniques. Sam-
ples show that these disadvantages lead the objective quality mea-
surement inconsistent with what humans perceive. Based on these
observations, a new metric designed to evaluate the performance of
frame interpolation techniques is proposed. This metric combines
the severity of interpolation artifacts and several human visual fac-
tors into a single quality score. Final implementation shows that the
proposed metric out-performs other commonly used metrics.

Index Terms— Objective quality assessment, Frame interpola-
tion, Visual attention

1. INTRODUCTION

In order to meet low bandwidth requirements, video applications
such as video telephony usually need to reduce temporal resolution
by skipping frames. However, low frame rate video may result in
motion jerkiness, especially when the scenes have fast or complex
motion. In such a case, motion compensated frame interpolation
(MCFI) is often adopted at the decoder to improve temporal video
quality.

MCFI interpolates the skipped frames by averaging forward and
backward motion compensated predictions using the received mo-
tion vectors (MVs). At the encoder, these MVs are generated using
block matching algorithm to maximize coding efficiency, rather than
finding true motion. As a result, MCFI that directly uses the received
MVs often suffers from annoying artifacts such as blockiness, ghost
effect, and discontinuous edges.

To solve this problem, a number of MV processing techniques
have been proposed to obtain a better motion vector field (MVF)
for MCFI. The work in [1] presented an adaptively weighted vec-
tor median filter based on prediction residues to obtain a smoother
motion field at the encoder. To eliminate blockiness in the interpo-
lated frame, resampling the MVF into finer field with smoothness
measurement is presented in [2]. In [3], instead of using high com-
plexity motion re-estimation at the decoder, the authors proposed
MV selection that selects the best MV for each merged group from
the neighboring MVs based on minimizing the difference between
forward and backward motion compensations.
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2. PROBLEM STATEMENT

Accurate quality assessment is very essential to understand the per-
formance of different MCFI techniques. Subjective evaluation [1, 2]
is the most convincing approach because it collects direct responses
from end users. However, it is inconvenient, expensive, and time
consuming. Objective methods provide an alternative feasible so-
lution. Most researches evaluate the interpolated frame quality us-
ing fidelity metrics. Reference [3] uses Peak-Signal-to-Noise-Ratio
(PSNR), a normalized Mean-Square-Error (MSE) between original
and processed images, to measure the interpolation quality. Refer-
ence [4] measures the quality by Structure Similarity (SSIM) metric
from [5]. SSIM uses a combination of three components, luminance,
contrast, and structure similarity comparisons, as the quality index.
However, the fidelity-wise measurement could fail because of the
following three reasons:

1 Pixel shift: The moving region is the most challenging part
for MCFI. Some approaches excel in this region but it also
changes the pixels in the static region. Nevertheless, this
pixel shift is hard to notice and human perceived quality is
good, but the fidelity metrics usually yield a low quality score.
Some examples are shown in Fig. 1. Visual observation
shows that Fig. 1(a) is worse than Fig. 1(b), but PSNR gives
a higher quality score to Fig. 1(a). From Fig. 1(c) and (d),
we observe that both approaches have similar amount of dis-
tortion on the moving hand, but Fig. 1(c) has less distortion
than Fig. 1(d) on the non-moving region. Therefore, we can
reasonably infer that the lower PSNR value of Fig. 1(b) is re-
sulted from the imperceivable distortion in the static region.

2 Artifacts dominance: Fig. 1(a) and (b) show some examples
of blocking and ghost artifacts. Different sensitivity to each
artifact affects the judgment of final quality. Hence, using
fidelity measurement alone is not sufficient to capture human
perceived quality.

3 Moving region dominance: The moving region introduces the
most artifacts during frame interpolating. In addition, hu-
mans tend to pay more attention to the moving region. Hence,
higher weight should be applied to this region when pooling
the local spatial quality measurement.

In order to overcome the problems stated above, a novel metric
for MCFI is proposed. This metric uses the degree of both blocking
and ghost artifacts as the basic measurements. These measurements
are adjusted by local motion activity. The final quality score is cal-
culated by an artifacts dominance adaptive integrator.
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Fig. 1. (a) and (b) are the interpolated frame produced by direct MCFI and MV smoothing technique from [2], and the corresponding PSNR
values are 31.77dB and 31.55dB respectively, (c)and (d) are the MSE map compared against original frame.

The rest of this paper is organized as follows. Section 3 de-
scribes the proposed metric in detail. Section 4 shows some compar-
isons of quality predicted from different metrics. The conclusion is
summarized in Section 5.

3. PROPOSED METRIC

Figure 2 shows the system diagram of the proposed metric. A blocki-
ness metric is used to estimate the amount of blocking artifact, whereas
a modified SSIM is used for estimating the ghost artifact. A mov-
ing region extractor outputs a moving region map to emulate various
sensitivity to the moving region. Finally, all measurements are in-
tegrated with a weighted sum. The weights are determined by the
dominance of each artifact.

Blockiness
Estimator

Similarity
Estimator

Spatial 
pooling Metric 

Integrator

Moving Region Extractor

Interpolated
Frames

Original
Frames

Q
Spatial 
pooling

Fig. 2. System diagram of frame interpolation metric

3.1. Blockiness Estimator

A well known blockiness metric from [6] is adopted to measure the
amount of blockiness artifacts. This metric first calculates the pixel
value discontinuity at each 8×8 boundary. Because blocking artifact
cannot be recognized in too dark or too bright lighting condition, the
discontinuity is weighted by a luminance masking function. The ad-
justed pixel discontinuity is normalized by the inter block pixel dif-
ference to avoid false alarms from real edges. Finally, a blockiness
map is calculated. It will be further adjusted based on its perceptual
importance later on.

Consider an image I that is composed of {Ic1, Ic2 . . . IcNc},
where Icj indicates the jth column of the image. The core of esti-
mating horizontal blockiness artifacts is

Bh = ‖wk(Ic(8×k) − Ic(8×k+1))‖2, (1)

where ‖· ‖ is the l2 norm and wk is the output of a luminance mask-
ing function used to adjust the perceptual importance of each bound-
ary discontinuity. Let wk be wi,j , where i = 1, 2 · · · , NR, j =
8 × k for k = 1, 2, · · · , NC/8 − 1, and NC , NR are the width and
height of the image respectively. The luminance masking function is

defined as

wi,j =

��
�

τ ln(1 +
√

μi,j

1+σi,j
) if μi,j ≤ ζ

τ ln(1 +

√
255−μi,j

1+σi,j
) otherwise

(2)

where

τ =
ln(1 +

√
255 − ζ)

ln(1 +
√

ζ)
(3)

and ζ is set as 81, μi,j and σi,j are the mean value and standard
deviation of the pixels on the same row within two adjacent blocks
respectively, which can be calculated by

μi,j =
1

16

8�
n=−7

I(i, j + n) (4)

and

σi,j = { 1

16

8�
n=−7

[I(i, j + n) − μi,j ]
2}1/2. (5)

The final horizontal blockiness map, B′
h, is obtained after normal-

izing the discontinuity with the average inter-pixel difference of the
non-boundary pixels as B′

h = Bh/Eh, where

Eh =
1

7

7�
n=1

Ψn, (6)

and

Ψn =

Nc/8−1�
k=1

‖wk(Ic(8×k+n) − Ic(8×k+n+1))‖2. (7)

The vertical blockiness map, B′
v , can also be obtained similarly with

horizontal blockiness map.

In order to combine the blockiness map with the moving region
map, the blockiness map must be transformed from a boundary basis
to a block basis. Therefore, the final blockiness map is

B(i′, j′) = 1− 1

16

7�
n=0

B′
h(8i′+n−7, j′+7)+B′

v(i′+7, 8j′+n−7),

(8)
where (i′, j′) is the index of each 8×8 block, i′ = 1, 2, · · · , NR/8−
1 and j′ = 1, 2, · · · , NC/8 − 1. Higher B implies less blockiness
and better quality.
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3.2. Similarity Estimator

This estimator is used to measure the severity of the ghost effect
using structure similarity measurement. Let Ix and Iy be the original
and interpolated images respectively. The SSIM from [5] is modified
to avoid the pixel shift problem indicated in Section 2. Because the
first two components described at Section 2 are used for pixel-wise
fidelity and the last component is a more structure similarity oriented
measurement, we only use the last component. The equation for the
similarity estimator is

s(x, y) =
σxy

σx + σy
, (9)

where σxy , σx and σy are the correlation and standard deviations of
Ix and Iy respectively. The similarity map is further processed into
block base by

S(i′, j′) =
1

64

8�
n=1

8�
n′=1

s[8(i′ − 1) + n, 8(j′ − 1) + n′]. (10)

Higher S implies higher structure similarity and fewer ghost arti-
facts.

3.3. Moving Region Extractor

A background subtraction method from [7] is adopted to separate
the moving region from non-moving region. The movement of each
pixel is modeled by a mixture Gaussian kernel along the temporal
axis of R,G and B color channels.

Each pixel of each frame for all three color channels is compared
against the pixels at the same spatial location in previous T frames
and input into a mixture Gaussian model,

Pr(i, j)(n) = {1 − 1

T

T�
t=1

3�
c

1�
2πσ

(n)2
c

e
− 1

2
[D(i,j)(n)

c ]2

σ
(n)2
c }αm ,

(11)

where n is the frame index, D(i, j)
(n)
c = I(i, j)

(n)
c − I(i, j)

(n−t)
c ,

and σ
(n)2
c = m2

c/0.9248, the variance of cth color channel for a
given pixel, which can also be thought of the bandwidth of the mix-
ture Gaussian kernel where mc is the median of |In − In+1| for
each consecutive pair (In, In+1), and αm is a constant used to em-
phasize the moving region. Higher value in Equation(11) means that
the pixel is more likely to be considered as part of the moving-region.
The final moving region map is

M(i′, j′) =
1

64

8�
n=1

8�
n′=1

Pr[8(i′ − 1) + n, 8(j′ − 1) + n′]. (12)

3.4. Spatial Pooling

The quality scores from both blockiness and similarity metrics of
each block are pooled together with different spatial importance given
by moving region map. The final blockiness and similarity measure-
ments are

QB =
1

(NC
8

− 1)(NR
8

− 1)
[
�
i′,j′

M(i′, j′) · B(i′, j′)], (13)

and

QS =
1

(NC
8

− 1)(NR
8

− 1)
[
�
i′,j′

M(i′, j′) · S(i′, j′)]. (14)

3.5. Metric Integrator

The final quality Q is produced by using a weighted sum of QB and
QS as

Q = ωB(βBQB + ΦB) + ωS(βSQS + ΦS), (15)

where Q ranges from 0 to 1 and higher value implies better qual-
ity. The parameters βB , ΦB , βS , ΦS are factors used to normalize
QB and QS within 0 to 1, and ωB , ωS are the weights for com-
bining QB and QS . Since the blockiness metric is only good in
measuring blocking artifacts, it will give a high score (good quality)
if ghost artifact is more pronounced than blocking artifact. Hence,
an evenly weighted sum of the scores from the blockiness and sim-
ilarity measurements will inevitably underestimate the amount of
distortion in the video under test. Therefore, we have designed a
mechanism to select the weights based on the dominance of each
artifact. The factor governing the weights selection is γ, where
γ = (βBQB + ΦB)/(βBQB + βSQS + ΦB + ΦS). If γ is larger
than some threshold, then it means that similarity is low and the final
quality should be decided by QS mainly. Otherwise, the blockiness
is considered significant, and higher weight will be applied on nor-
malized QB . Detail of the selection threshold and the predefined
values of ωB and ωS are given in Table 1.

0.53 < γ 0.47 ≤ γ ≤ 0.53 γ < 0.46
ωB 0.3 0.5 0.7
ωS 0.7 0.5 0.3

Table 1. Values of ωB and ωS and the applicable scenarios

4. SIMULATION

Two video sequences, FOREMAN and SILENT, of CIF frame resolu-
tion are used with original frame rate of 30 frame per second (fps).
They are encoded using H.263, but even frames are skipped to gen-
erate video bitstreams of 15 fps. The rate control function is disabled
by fixing quantization parameter (QP) values. The averaged bit rates
of these two test sequences are 395.77 Kbps and 372.70 Kbps for
FOREMAN and SILENT, respectively. The skipped frames are inter-
polated at the decoder for evaluation of the proposed method using
direct MCFI, vector median filter [1], MV smoothing as described
in [2], and MV selection in [3] but with fixed block size.

Figures 3 and 4 show the 94th and 64th frame of FOREMAN

and SILENT produced by different interpolation approaches, respec-
tively. The corresponding quality measurements from the proposed
metric, SSIM and PSNR are shown in Tables 2 and 3.

In Fig. 3, we observe that the face structure is barely preserved
and many blocking artifacts are introduced. Fig. 3(a) has the greatest
blocking and ghost artifacts. Fig. 3(b) has fewer blockiness but the
face structure is still highly distorted. Fig. 3(c) has the least block-
ing artifact but still fails to preserve the face structure. Although
Fig. 3(d) has more blockiness than Fig. 3(c), it preserves the face
structure relatively better. Subjectively, we conclude that Fig. 3(d)
has the best quality, and the rest from high to low are (c), (b), and
(a). From Table 2, the proposed metric is consistent with our visual
evaluation (i.e., Fig. 3(d) has the highest score). In the other hand,
SSIM metric yields the same value for Fig. 3(b) and (c), whereas the
PSNR values for Fig. 3(b) is higher than that of Fig. 3(c). These
metrics do not match our subjective observation.

In Fig. 4, most artifacts occur around the moving hand and the
amount of blockiness from high to low is (a) > (b) > (d) > (c).
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Fig. 3. The interpolated results of frame 94 of FOREMAN sequence.
(a), (b), (c), and (d) are the results produced by Direct MCFI, vec-
tor median filter in [1], MV smoothing in [2], and MV selection
described in [3] respectively

Figure 4(a), (b), and (c) have similar degree of ghost effect and Fig.
4(d) has the least. Although Fig. 4(d) has slightly more blockiness
than Fig. 4(c), Fig. 4(d) preserves the hand structure relatively better
than Fig. 4(c). Overall, the subjective quality ranking from high to
low is Fig. 4(d), (c), (b) and (a). In Table 3, the proposed metric gives
Fig. 4(a) and (b) almost equivalent low quality score and Fig. 4(c),
(d) higher score. This measurement matches our visual observation
closely. SSIM and PSNR give the lowest quality score to Fig. 4(c),
which is contradictory to our subjective evaluation. This is the result
of pixel shift in the non-moving-region as discussed in Section 2.

Proposed metric SSIM PSNR(dB)

Direct MCFI 0.26 0.79 26.59

Median filtering [1] 0.32 0.80 26.90

MV smoothing [2] 0.51 0.80 26.64

MV selection [3] 0.61 0.82 27.24

Table 2. Quality comparison for FOREMAN 94th frame

Proposed metric SSIM PSNR(dB)

Direct MCFI 0.48 0.84 31.77

Median filtering [1] 0.40 0.84 31.70

MV smoothing [2] 0.67 0.83 31.55

MV selection [3] 0.73 0.84 32.12

Table 3. Quality comparison for SILENT 64th frame

5. CONCLUSION

This paper investigates the performance of widely used quality met-
rics for frame interpolation. Based on the investigation, a new metric
for measuring the quality of interpolated frames is proposed. This
metric is designed based on several prior knowledge about frame
interpolation, such as type of artifacts, possible region of quality

(a) (b)

(c) (d)

Fig. 4. The interpolated results of frame 64 of SILENT sequence. (a),
(b), (c), and (d) are the results produced by Direct MCFI, vector me-
dian filter in [1], MV smoothing in [2], and MV selection described
in [3] respectively

degradation, and the various dominance of different artifacts. The
proposed metric also has been implemented and compared against
other metrics, such as PSNR and SSIM. The results show that the
proposed metric is able to provide more accurate quality assessment.

The proposed metric will be further improved by adding more
human visual factors, such as texture and temporal masking. This
will be investigated in future work.
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