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ABSTRACT
This paper presents a blind source separation method to un-
mix highly mixed hyperspectral data, i.e., each pixel is a mix-
ture of responses from multiple materials and no pure pix-
els are present in the image due to large sampling distance.
The algorithm introduces a minimum volume constraint to
the standard non-negative matrix factorization (NMF) formu-
lation, referred to as the minimum volume constrained NMF
(MVC-NMF). MVC-NMF explores two important facts: first,
the spectral data are non-negative; second, the constituent
materials occupy the vertices of a simplex, and the simplex
volume determined by the actual materials is the minimum
among all possible simplexes that circumscribe the data scat-
ter space. The experimental results based on both synthetic
mixtures and a real image scene demonstrate that the pro-
posed method outperforms several state-of-the-art approaches.

Index Terms— Hyperspectral imagery, spectral unmix-
ing, endmember extraction, non-negative matrix factorization,
linear mixture model.

1. INTRODUCTION
Hyperspectral sensors capture electromagnetic energy from
400 to 2,500 nanometers with hundreds of narrow wavelength
intervals. The increased spectral information provides fine
details that allow to discriminate among different materials.
However, due to the large ground sampling distance, numer-
ous disparate materials additively contribute to the spectrum
measured at a single pixel [1], resulting in the so-calledmixed
pixels. A challenge in analyzing these mixed pixels is to iden-
tify the individual constituent materials (endmembers) in the
mixture, and infer their relative proportions (abundances) in
terms of the spatial coverage within a single pixel, a process
referred to as spectral unmixing.
In practical applications, the mixture formation is widely

modelled as a linear process due to its effectiveness and sim-
plicity. The basic formation model is expressed as

X = AS + E (1)
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where the columns ofX ∈ Rl×n denote the observation vec-
tors of n pixels measured at l spectral bands. A ∈ Rl×c is
the material signature matrix whose columns, {aj}c

j=1 ∈ Rl,
correspond to the spectral signatures of c endmembers. The
abundance vectors are represented by the columns of S ∈
Rc×n, which satisfy two physical constraints: first, each el-
ement of S is non-negative; second, the sum of column el-
ements equals 1; that is,

∑c
j=1 sji = 1, i = 1, . . . , n. E

denotes the possible noise and errors.
Given this formation model and assume the information

of endmembers (i.e., A) is known, the spectral unmixing re-
duces to a linear regression problem. In this paper, we focus
on blind unmixing; that is, bothA and S are unknown. Vari-
ous techniques have been investigated to perform this estima-
tion, varying from the popular independent component analy-
sis (ICA) [2], the iterative constrained least squares [3], to the
convex hull analysis [4]. The convex geometry-based algo-
rithms exploit the fact that the observations in a hyperspectral
scene are within a simplex whose vertices correspond to the
endmembers [4, 5]. But, these approaches are either computa-
tionally prohibitive or based on the assumption that the image
contains pure pixels, which is not realistic for hyperspectral
images with low spatial resolutions. Recently, non-negative
matrix factorization (NMF) [6], as a blind source separation
method, has been applied to hyperspectral unmixing [7, 8].
However, the simple sum-to-one constraint [7] and the end-
member smoothness constraint [8] are not effective to yield a
reliable estimate. Moreover, both algorithms are sensitive to
algorithm initializations.
In this paper, we present a new constrained NMF method,

which integrates the least squares analysis and the convex ge-
ometry model by incorporating a volume constraint into the
NMF formulation, referred to as the minimum volume con-
strained NMF method (MVC-NMF). The objective is to find
a simplex that circumscribes the data space, whose vertices
are mostly close to the real endmembers. The initial simplex
is constructed by randomly choosing c data points. The learn-
ing algorithm then expands the simplex under the effect of
two forces: the external force (minimizing the approximation
error) drives the estimation to move outward of the data cloud;
and the internal force (minimizing the simplex volume) acts
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in the opposite direction by forcing the endmembers to be as
close to each other as possible. Through experimental valida-
tions, we observe that the balance between these two forces
effectively guides the learning process to converge to the true
endmember locations. In the next section, we will give a
detailed description of the proposed MVC-NMF algorithm.
The experimental results will be demonstrated in Sec. 3, and
Sec. 4 concludes the paper.

2. THE MVC-NMF ALGORITHM
NMF is a popular matrix factorization method [6]. Math-
ematically, given a non-negative matrix X, NMF looks for
two matrices A and S with non-negative elements such that
X ≈ AS. Geometrically, for the data in a hyperspace, NMF
with the sum-to-one constraint aims at constructing a simplex
enclosing the data, whose vertices correspond to the columns
of A, and S consists of the weight coefficients of these ver-
tices in generating each data point. It is apparent that the solu-
tion is not unique. For spectral unmixing, we assume the data
cloud retains certain shape which allows the reconstruction of
simplex. Then, the endmembers correspond to the most com-
pact simplex among all possible simplexes that circumscribe
the data space [4]. In addition, the noise normally results in
a bigger data cloud, which thereby leads to a simplex with
larger volume than the clean data. Based on these observa-
tions, we propose to introduce the volume constraint to the
standard NMF formulation.

2.1. Problem Formulation
Combining the goal of minimum approximation error with
the volume constraint, we arrive at the following constrained
optimization problem

minimize f(A,S) =
1
2
‖X − AS‖2

F + λJ(A)

subject to A � 0, S � 0, 1T
c S = 1T

n

(2)

where the operator ‖·‖F denotes the Frobenius norm, and
J(A) is the penalty function, calculating the simplex volume
determined by the estimated endmembers. The regularization
parameter λ ∈ R is used to control the tradeoff between the
accurate reconstruction and the volume constraint. The sym-
bol � denotes componentwise inequality, i.e., A � 0 means
aij ≥ 0 for i = 1, . . . , l, j = 1, . . . , c. 1c (1n) is a c (n)-
dimensional column vector of all 1s. The first term of the
objective serves as the external force to drive the search to
move outward, so that the generated simplex contains all data
points with relatively small errors. The second term serves
as the internal force, which constrains the simplex volume to
be small. A solution is found when these two forces balance
each other.
The simplex volume is calculated based on the connection

between the volume and the determinant, which leads to

J(A) =
1

2(c − 1)!
det2

([
1T

c

Ã

])
(3)

where the matrix Ã ∈ R(c−1)×c is a low dimensional trans-
form ofA given by

Ã = UT (A − μ1T
c ) (4)

The matrixU ∈ Rl×(c−1) is formed by the c−1most signifi-
cant principal components ofX through principal component
analysis. The column vector μ is the data mean. To formulate
the penalty term as a function of A, we define two constant
matrices

C �
[

1T
c

0

]
, B �

[
0T

c−1

I

]
(5)

with 0 being a (c−1)×c zero matrix and I an identity matrix
of size (c − 1) × (c − 1). We next define

Z �
[

1T
c

Ã

]
= C + BUT (A − μ1T

c ) (6)

Then, the objective function is finalized as

f(A,S) =
1
2
‖X − AS‖2

F +
τ

2
det2(Z) (7)

with τ = λ
(c−1)! .

2.2. Optimization Algorithm
Minimizing the objective function in Eq. 7 with respect to
both A and S is a combinatorial optimization problem. We
here resort to the alternating non-negative least squares tech-
nique [8, 9]. This technique treats the original optimization
problem as two sub-problems with the iterative update,

Sk+1 = arg min
S

f(Ak,S), Ak+1 = arg min
A

f(A,Sk+1)

that is, we alternatively update one matrix, holding the other
one fixed. The initial A is formed by randomly choosing c
points from the given data as its columns, and the initial S is
selected as a zero matrix.
To incorporate the non-negative constraint, we adopt a

projective method, which follows the standard update rule. If
the new estimate is outside the feasible set, a projective func-
tion is used to project the point back to the feasible region.
For the non-negative constraint, the following learning rule
will be used,

Ak+1 = max(0,Ak +αkDk
A),Sk+1 = max(0,Sk +βkDk

S)

where αk and βk denote the stepsize, and Dk
A and Dk

S are
the descent directions selected using the conjugate gradient
method [10]. The central idea of conjugate direction stems
from the problem associated with steepest descent, which of-
ten takes a step almost in the same direction as the earlier step.
By taking conjugate directions, this drawback can be avoided.
The descent directionDk

A is given by

Dk
A = −∇Af(Ak,S) + ζkDk−1

A (8)
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with ζk calculated based on

ζk =
∇Af(Ak,S)T

(∇Af(Ak,S) −∇Af(Ak−1,S)
)

∇Af(Ak−1,S)T∇Af(Ak−1,S)

The initial conjugate direction is simply chosen as the nega-
tive gradient D0

A = −∇Af(A0,S). To make sure the gen-
erated search direction is conjugate to the previous direction,
the stepsize has to be carefully selected. The line minimiza-
tion rule is normally used, that is,

αk = arg min
α

f(Ak + αDk
A,S) (9)

The descent direction Dk
S and the stepsize βk are selected in

the same ways as in Eqs.8 and 9. The derivative ∇Sf(A,S)
and∇Af(A,S) can be derived as

∇Sf(A,S) = AT (AS − X)

∇Af(A,S) = (AS − X)ST + τdet2(Z)UBT (Z−1)T

To take care of the sum-to-one constraint, we augment the
matricesX andA by a row of constant, denoted by

X̃ =
[

X
δ1T

n

]
, Ã =

[
A

δ1T
c

]
(10)

where δ is a positive number to control the effect of the sum-
to-one constraint. The learning of abundance S takes these
two augmented matrices as inputs. The resulting estimate will
approach the constraint as δ increases.

3. EXPERIMENTAL RESULTS
In this section, we evaluate the proposed MVC-NMF using
both synthetic images and a real hyperspectral scene. The
performance comparison is conducted from two perspectives,
the evaluation of the identified endmember signatures and the
evaluation of the estimated abundances. We use two metrics,
spectral angle distance (SAD) and abundance angle distance
(AAD), expressed as

SAD = cos−1

(
aT â

‖a‖‖â‖
)

, AAD = cos−1

(
sT ŝ

‖s‖‖ŝ‖
)

to measure the shape similarity between the estimated and the
actual endmembers and abundances, respectively.

3.1. Evaluation with Synthetic Images
The proposed method is compared with two NMF-based ap-
proaches, the smoothness constrained NMF (SCNMF) [8] and
the projected gradient NMF (PGNMF) [9], and one convex
geometry-based method based on the pure pixel assumption,
vertex component analysis (VCA) [5]. Since VCA only iden-
tifies endmembers, to find the abundances, we adopt the pop-
ular fully constrained least squares method (FCLS) [3]. The
synthetic images are generated using the spectral reflectances

selected from the USGS digital spectral library [11]. We di-
vide the entire image into units of 8 × 8 blocks. The pixels
within each block are pure and have the same type of cover,
randomly selected as one of the endmember classes. The re-
sulting image is then degraded by a spatial low pass filter to
simulate an image with mixed pixels. To further remove pure
pixels, we replace all the pixels whose abundance is larger
than 80% with a mixture made up of all endmembers of equal
abundances; that is, each endmember has an abundance of 1

c
in the mixture. To simulate possible errors and sensor noise,
zero mean white Gaussian noise is added to the mixture data.
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Fig. 1. Performance comparison with random and VCA ini-
tializations (SNR = 20dB) (a) AAD (b) SAD

As mentioned earlier, unconstrained NMF methods are
sensitive to initializations. To study the effectiveness of the
proposed volume constraint, we use two methods for the end-
member initialization, i.e., random initialization and the use
of the endmembers identified by VCA. The learning is termi-
nated when the iteration number of successive increase of the
objective value is greater than 5, or the maximum iteration
number, 100, is reached. Considering the low convergence
of SCNMF, we allow the maximum number of iteration to be
300. The regularization parameter of MVC-NMF is selected
as τ = 0.015.
Fig. 1 displays the mean (bar) and the standard deviation

(error bar) of 20 random tests in terms of SAD and AAD,
respectively. One immediate observation is that no matter
which initialization method is used, the proposed MVC-NMF
always generates the smallest means and standard deviations,
indicating that this approach produces the most accurate and
stable estimates. In addition, PGNMF outperforms VCA-
FCLS when initialized with the endmembers estimated by
VCA, which however, is not the case when using random
initializations. Another important observation is that MVC-
NMF is less sensitive to the selection of initial points com-
pared to SCNMF and PGNMF. This observation leads to the
conclusion that the volume constraint effectively confines the
solution space and converts the original ill-posed problem to
a well-posed one. Fig. 2 displays the simplex volume as the
learning progresses. The constant profile corresponds to the
result calculated using the real endmember set. It can be
seen that during the first few iterations, both PGNMF and
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MVC-NMF expand the simplex rapidly. After that, the intro-
duced volume constraint in MVC-NMF effectively confines
the simplex volume to be close to the true value. However,
the PGNMF learning keeps increasing the simplex size, re-
sulting in a much larger volume size than its actual value.
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Fig. 2. Comparison of the simplex volume.

3.2. Evaluation with Real AVIRIS Data
In this experiment, we use the hyperspectral data captured by
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor over Cuprite, Nevada, as the test site. This site has
many well exposed minerals, and some of them are prevalent,
while others are highly mixed in a small set of pixels. The
test image is a subscene containing 100 lines and 100 pix-
els per line. To improve the unmixing performance, we have
removed the low SNR bands as well as the water vapor ab-
sorption bands (including bands 1-2, 104-113, 148-167 and
221-224) from the original 224-band data cube. A total of
188 bands are used in the experiment.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Abundance maps of different minerals. (a) Alunite
(b) Chalcedony (c) Kaolinite (d) Sphene (e) Nontronite (f)
Montmorillonite (g) Buddingtonite (h) Muscovite

Fig. 3 illustrates the estimated abundance maps. It can be
seen that these estimations present high level of similarity to
the published results [5, 12]. The last two maps are of par-
ticular interest, in which the abundance maps present positive
values in a small area and zero everywhere else. This observa-
tion confirms that MVC-NMF is able to identify highly mixed
endmembers, even though they are only present in a small set
of pixels.

4. CONCLUSIONS
This paper addressed an unmixing method for highly mixed
hyperspectral data without the pure pixel assumption. The ex-
perimental results with synthetic mixtures showed that the in-
troduced volume constraint effectively stabilizes the solution
and results in more accurate estimates. The proposed MVC-
NMF outperforms three advanced approaches compared. The
evaluation using a real hyperspectral scene collected by the
AVIRIS sensor indicated that MVC-NMF has the potential of
identifying highly mixed endmembers.
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