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Abstract—We present a computationally efficient demosaicing
algorithm based on a luminance-chrominance model of the
Color Filter Array (CFA) image. We show that the chrominance
information can be estimated using simple low-pass filtering. This
algorithm allows us to use separable recursive filters, which are
particularly adapted for real-time processing. Moreover, while
most of demosaicing algorithms are specific to a particular CFA
(usually the popular Bayer CFA), our method can be applied to
any CFA. We present a linear version of the algorithm and an
adaptive extension.

I. INTRODUCTION

Color demosaicing refers to the operation of constructing a
color image from a mosaic of chromatic samples. In digital
cameras today, the color information is sampled with a single
sensor in front of which is placed a Color Filter Array (CFA).
The resulting image has a single color value per pixel and
should be interpolated to retrieve the corresponding color
image. The interpolation is generally not perfect and there
may appear artifacts in the reconstructed image. The most used
CFA is the one proposed by Bayer [1].
Two main types of methods have been proposed in the

literature : linear ones and adaptive ones, each one cor-
responding to a characteristic of color images [2]. Linear
methods (such as [3], [4]) exploit the spectral correlation
or inter-plane correlation (the color planes are very similar
one to each other in high frequencies). Since this correlation
depends only on the spectral sensitivities of the color filters,
it is assumed constant over the image and a linear uniform
algorithm is used. Nonlinear or adaptive methods (such as
[5]–[9]) exploit in addition the spatial correlation or intra-
plane correlation (there is a stronger correlation between pixels
along a contour than across it). The visual artifacts of the
demosaicing process can be substantially reduced by taking
into account both correlations. However, an adaptive algorithm
means analyzing the image content, and hence increasing the
computational complexity of the algorithm. At the opposite,
linear methods are computationally efficient, but there may
remain some artifacts in areas of high frequency content. Thus,
demosaicing always results in a compromise between image
quality and computation time. The search for the optimal
tradeoff is becoming more and more determining with the
advent of cameras on embedded systems such as mobile
phones. In this context, we propose a linear method that uses
recursive filtering to reduce computation time. We also propose
an extension with adaptive processing to increase the quality
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Fig. 1. CFA patterns and amplitude specta of a corresponding CFA image:
(a) Bayer CFA; (b) diagonal stripes CFA; (c) CFA proposed by Lukac [2].

of the reconstructed image.
Moreover, every demosaicing algorithm is designed for a

specific mosaic, generally the Bayer CFA. The method we
propose here can be applied on any mosaic, in particular on
pseudo-random mosaics, which reveal interesting properties in
terms of false colors reduction. To our knowledge, the only
attempts of demosaicing a general mosaic can be found in [2]
and [10], but they are computationally heavy.
The paper is organised as follows. We first recall the

spectral model of Alleysson et al. [4] in Section II. Then, we
describe our new approach in Section III. We finally discuss
its implementation in both linear and adaptive manners, using
recursive filters (Section IV).

II. COLOR OPPOSITION MODEL
Let m be the global sampling lattice (or mosaic), without

distinction of the color filter types. We restrict ourselves to the
case where m is a square lattice of Dirac impulses. m can be
decomposed into three sub-mosaic mR, mG and mB:

m = mR + mG + mB (1)

where mi(x, y) is 1 or 0 whether the filter i (with i ∈
{R, G, B}) is present or not at pixel (x, y). In the Fourier
domain, we have:

m̂ = δ0 and

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m̂R = r0δ0 +
∑
n�=0

rnδn

m̂G = g0δ0 +
∑
n�=0

gnδn

m̂B = b0δ0 +
∑
n�=0

bnδn

(2)
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where δn denotes the Dirac impulse at spatial frequency n.
For instance, for the Bayer pattern n describes the set [4]:{

(
k

2
,
l

2
), with (k, l) ∈ {−1, 0, 1} and (k, l) �= (0, 0)

}
(3)

r0, g0 and b0 are the mean values of each submosaic, or
in other words, the probability at each spatial location to
have a sample of the respective color channel. Let us call
them respectively pR, pG and pB . By unicity of the Fourier
transform, we may conclude:{

pR + pG + pB = 1
rn + gn + bn = 0 (∀n �= 0)

(4)

Now, let I = {CR, CG, CB} be a color image, i.e. with three
color planes. The resulting CFA image Im (a grayscale image
containing the color mosaic) is obtained by:

Im(x, y) =
∑

i∈{R,G,B}

Ci(x, y).mi(x, y) (5)

and its Fourier transform is:

Îm(ν) =
∑

i

piĈi(ν)

︸ ︷︷ ︸
φ̂(ν)

+
∑
n�=0

rnĈR(n − ν)

+ gnĈG(n − ν)

+ bnĈB(n − ν)︸ ︷︷ ︸
ψ̂n(n−ν)

(6)

φ is a linear combination of color signals with positive
weights, it is a luminance term. ψn(n− ν) is a linear combi-
nation of color signals with coefficients whose sum vanishes,
modulated at frequency n. It is a modulated chrominance.
Fig. 1 shows three examples of CFA’s and the amplitude
spectra of an image sampled by those CFA’s. We can see
on that figure that the CFA pattern guides the location of
the chrominance carriers, and controls thus the amount of
aliasing between the baseband luminance and the modulated
chrominances.
This model has been used for designing a linear space-

invariant demosaicing algorithm [4] and two adaptive algo-
rithms [7], [8], which all apply on the Bayer CFA.

III. DESCRIPTION OF THE NOVEL APPROACH
Let f be a lowpass filter, whose characteristics will be

specified later. Let us call ILF
m the CFA image filtered by

f :
ILF
m = f ∗ Im (7)

where ∗ denotes the convolution product. Using Eqn. (6) -
chrominances are modulated to high frequencies - we have:

f ∗
∑
n�=0

ψn ≈ 0 (8)

and hence
ILF
m = f ∗ φ = φLF (9)

The last equation holds if the frequency cutoff fc of filter f

is lower than (n − fmax), with fmax the highest frequency
of the chrominance signals. ILF

m thus contains a coarse (but

(a) (b) (c)

Fig. 2. Amplitude spectra: (a) LF luminance φLF ; (b) HF mosaic image
IHF
m ; (c) channel R of the demultiplexed HF mosaic image IHF

m . Each figure
corresponds to the Bayer case.

alias-free) estimate of the luminance image φ (Fig. 2(a)). Let
IHF
m be the complementary signal (Fig. 2(b)):

IHF
m = Im − φLF (10)

IHF
m conveys the modulated chromatic oppositions and the
details of luminance (high-frequency luminance φHF ). In the
frequency domain we have:

ÎHF
m (ν) = φ̂HF (ν) +

∑
n�=0

ψ̂n(n − ν) (11)

with φ = φLF + φHF .
Let us now examine the demultiplexing of IHF

m . The
demultiplexing of a mosaic image is the conversion from the
grayscale image to the color image, with still one color per
pixel. It is equivalent to multiplying the mosaic image IHF

m

by the submosaics mi to get the three color channels {IHF
m }i:

{IHF
m }i(x, y) = IHF

m (x, y)mi(x, y) (12)

Using Eqn. (10), it comes:

{IHF
m }i = Immi − φLF mi (13)

where in fact Immi = Cimi, and Ci = φ+{ψ}i. So we have:

{IHF
m }i = (φ + ψi)mi − φLF mi

= (φHF + ψi)mi
(14)

The submosaic mi can be decomposed into the sum of a
constant part pi and a modulating part m̃i, mi = pi + m̃i

as in Eqn. (2), which yields to:

{IHF
m }i = pi(φ

HF + ψi)︸ ︷︷ ︸
baseband

+ (φHF + ψi)m̃i︸ ︷︷ ︸
modulated

(15)

We thus have two terms in the expression of {IHF
m }i : one

term is baseband, the other one is HF modulated (Fig. 2(c)).
Moreover, if the frequency cutoff fc of filter f was chosen to
match the chrominance bandwidth, φHF and ψi have disjoint
supports (the chrominance of natural images ψ being generally
a lowpass signal). Consequently, simple lowpass filters on
the demultiplexed HF image are sufficient to recover the full
chrominance components of the image. In practice we use the
same filter f used for the estimation of φLF :

ψi =
1

pi

f ∗ {IHF
m }i (16)
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Knowing the mosaic image and the chrominance components,
one can retrieve the full luminance component by subtraction:

φ = Im −
∑

i∈{R,G,B}

ψimi (17)

An error-free recovery is illusory for real images, in prac-
tice there is spectral overlapping between chrominance and
modulated luminance which expresses itself through false
colors and/or zipper noise. To improve the visual rendering,
an adaptive extension of the algorithm will be introduced in
the next section.
To sum up, the approach can be divided into 5 steps:
1) separation of the mosaic image Im into low and high
frequency components φLF and IHF

m ,
2) demultiplexing of the HF component,
3) filtering of each color plane in order to get the chromi-
nance components ψR, ψG and ψB ,

4) retrieving of the luminance φ by subtraction between the
mosaic image and the “remodulated” chrominances,

5) addition of luminance to each chrominance to get CR,
CG and CB .

IV. IMPLEMENTATION

In the following section, we present two implementations of
the approach that was described in the preceding section. One
is a linear version whereas the other one is an edge-adaptive
extension.

A. Linear method

The crucial point of the linear method is the design of the
filter f . f has the only constraint to be lowpass, and to match
the chrominance bandwidth. For computational efficiency, we
chose to implement it using a separable recursive filter whose
z-transform is F (z1, z2) = F1(z1)F2(z2), where z1 and z2 are
the horizontal and vertical variables, and with

Fk(zk) = (1 − a)2
1

1 − az−1
k

1

1 − azk

(k ∈ {1, 2}) (18)

Note that F involves only 4 neighbors. Its frequency response
is represented in Fig. 3. As the reader can see, F attenuates
much more in diagonal than in horizontal/vertical directions.
Hence, a one-order numerator is needed for mosaics whose
mi modulate at horizontal or vertical direction (e.g. the Bayer
pattern for R/B channels). However, this FIR part is superflu-
ous for CFA’s that do not modulate chrominance in horizontal
and vertical directions.
The parameter a controls the cutoff frequency, and hence,

the tradeoff between false colors and zipper noise. For the
Kodak database, we empirically found a = 0.5.
Note that in Eqn. (16), the densities pi of the color filters

are involved. For the Bayer CFA, these are constant and have
values {0.25, 0.5, 0.25}. In a general case, these densities may
vary locally around the mean values. These variations have to
be taken into account in the filtering process in order to match

Fig. 3. Frequency response of the IIR filter (dB).

the luminance definition of Eqn. (6). Eqn. (16) will be thus
rewritten (for i ∈ {R, G, B}):

ψi =
f ∗ {IHF

m }i

f ∗ mi

(19)

This technique is called normalised convolution [11]. Note that
f ∗mi depends only on the mosaic and can thus be hard coded.
The same precaution holds for the estimation of φLF .

B. Adaptive extension
The coarse, alias-free luminance φLF can be exploited in

order to filter more accurately the chrominances. This “rough”
estimate may appear sub-optimal to the reader who is aware
that classical demosaicing methods use the mosaic image Im

directly (e.g. [7], [9]), without any lowpass filtering. However
these methods must compute gradients between pixels of
the same class (R, G or B), wich are not adjacent on the
CFA. Therefore, φLF contains the same amount of spatial
information as the marginal planes of the mosaic image do.
Moreover φLF has the property of being totally independent
from the mosaic, since it contains pure spatial information.
The edge detection on φLF will thus be mosaic blind.
We propose a voluntary simple adaptive method, in order

not to increase to much the computation time, consisting
in rendering edge adaptive the chrominance filtering. We
compute the horizontal and vertical gradients on φLF . These
gradients are used to choose the direction of interpolation of
the chrominance filtering, using F1 or F2. Residus of lumi-
nance are then removed from the interpolated chrominances:

ψi(x, y) = ψi(x, y) −
∑

j∈{R,G,B}

pjψj (20)

As other adaptive methods, a postprocessing step improves the
quality, due to potential misguidings of the adaptive filter. A
solution consists in updating the chrominance values using the
estimated luminance.

C. Results
We have reported in Table I both the PSNR values (com-

puted over the Kodak databse) of our linear and adaptive
methods and of some methods of the litterature, and an
estimation of the complexities in terms of operations per pixel.
The linear version has the same quality than the linear al-

gorithm in [4]. However it drastically reduces the computation
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(a) (b)

Fig. 4. Crop of a demosaiced image using (a) the linear version and (b)
the adaptive version of the proposed method, with (from top to bottom) the
Bayer’s, Lukac’s and the diagonal stripes mosaics.

time, because of the recursive filtering. The complexity is
approximately of 22 op./pixel (for the Bayer case, a bilinear
prefiltering needs to be added).
The adaptive method substantially removes the zipper noise

that arises with the linear method (Fig. 5(b)). While the results
are visually improved, the PSNR values are close to those
of the linear method. This may be due to the fact that the
proposed adaptive method is very simple. A more sophisticated
solution should give better objective quality. Interestingly, the
fact that a filter type is missing at each line and each column
compels us to perform iterative calculations for the Bayer
CFA (as most adaptive methods do), and the method loses
its efficiency. It is much more efficient on CFA’s that do
not have the property of carriers at vertical and horizontal
directions. With respect to the linear version, adding the
gradient computation, the luminance residus subtraction and
the postprocessing step leads to approximately 50 op./pixel.
It is noteworthy that the visual quality is not the same with

every CFA. Pseudo-random CFA’s show interesting results in
terms of false color suppression (Fig. 5).

V. CONCLUSION

We presented a new demosaicing approach that is applicable
to any CFA arrangement. The linear version is extremely
fast, for a reasonable quality. The adaptive extension gives

Linear methods Adaptive methods
Here [3] [4] Here [7] [9] [5]

R 37.89 35.36 37.83 38.23 38.77 38.02 38.40
G 40.53 38.87 40.74 40.62 42.12 39.59 41.37
B 36.70 34.15 36.48 36.98 38.62 36.76 37.46

Comp. 25 21 77 50 63 161 405

TABLE I
PSNR VALUES (DB) AND COMPLEXITY (OP./PIX.)

(a) (b)

Fig. 5. Reconstruction from the Bayer mosaic (left) and from a pseudo-
random mosaic (right), illustrating the false color suppression of the pseudo-
random mosaic.

interesting results, in particular on pseudo-random mosaics,
but should be improved with a more sophisticated exploitation
of the edges.
This algorithm makes an analogy with the visual system.

The human retina provides a coarse estimate of the achro-
matic spatial information at its output, called magno-cellular
pathway. This channel is thought to prepare the information for
the brain before the arrival of the details of spatial information
(high frequencies of luminance) and color oppositions, which
are conveyed by the parvo-cellular pathway.
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