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ABSTRACT

Image thumbnails are commonly used for selecting images for
display, sharing or printing. Standard thumbnails, generated with
current techniques, do not distinguish between high and low qual-
ity originals. Both sharp and blurry originals appear sharp in the
thumbnails, and both clean and noisy originals appear clean in the
thumbnails. This leads to errors and inef ciencies during image se-
lection. In this paper, thumbnails generated using image analysis
better represent the local blur and the noise of the originals. The
new thumbnails provide a quick, natural way for users to identify
images of good quality, while allowing the viewer’s knowledge to
select desired subject matter. Computer simulations with added blur
and noise show the new thumbnails better represent images of dif-
fering qualities. Validation of these ndings is found in a subjective
evaluation reported elsewhere but summarized below.

Index Terms— image quality, blur, noise, resampling, image
thumbnails

1. INTRODUCTION

Image thumbnails are pervasive. Computer operating systems and
applications display image thumbnails of folders or albums. Re-
tail photo kiosks let users review thumbnails, touch the screen at
the thumbnails, and then print the selected photos. Image sharing
sites display thumbnails of photo albums. Small displays on print-
ers, cameras, cell phones, and video players let users preview images
before taking actions such as viewing, mailing, printing, or deleting.

Standard thumbnail generation involves lowpass ltering and
downsampling. This process results in thumbnails that do not repre-
sent the quality of the high resolution originals. None of the many
sources of image blur, including unintentional misfocus and camera
shake, as well as intentional depth of eld local blurs are represented.
Image noise, particularly prevalent in night or indoor scenes, is also
not preserved.

Browsing with standard thumbnails leads to errors and inef -
ciencies. While browsing, one can easily select a normally appear-
ing thumbnail to nd that the original is blurred, noisy, or both. The
same problem on printer or camera LCDs leads to erroneous selec-
tions for printing or deleting.

This paper describes new thumbnails that alleviate these prob-
lems by representing original image quality in addition to image
composition. Figure 1 shows examples of the results for the cropped
originals shown in Figure 2.

A bene t of the new thumbnails is that they are natural to in-
terpret; there is no learning necessary to understand the blur and
noise shown in the new thumbnails. The alternate approach of auto-
matic image ranking by quality [1] is extremely dif cult because the
knowledge about the subjects of interest resides with the user, not

with the image. For example, with the new thumbnails the user can
quickly check whether the subject of interest is in focus.

2. PROBLEM FORMULATION

For simplicity of notation, images are considered column stacked
vectors [2]. Given a distorted input image, d, we create a thumbnail
t = T (d) using a potentially non-linear process. The distortion of
the input image is modeled by,

d = Bc + n, (1)

Where the vector c represents an ideal image, the matrix B repre-
sents, in general, a space-varying blur that may correspond to unin-
tended distortions such as camera shake, motion blur or misfocus,
and n represents an additive, perhaps correlated, noise. Well taken
digital photographs will not have unintended distortions. In this case,
the noise n = 0. But the matrix B may not be the identity, still rep-
resenting the space-varying depth of eld blur. In the special case of
in nite depth of eld, B = I , and therefore d = c.

3. STANDARD THUMBNAILS

We rst consider the limitations of standard thumbnail generation.
Commonly used thumbnails differ in the details of the lters ap-
plied [2], but they consist of a linear process, rst applying an an-
tialiasing lowpass lter, A, followed by subsampling, S. The thumb-
nails are thus given by

ts = Tsd = SAd, (2)

where Ts represents the combination of ltering and subsampling.
Expanding Equation 2 using the image model in Equation 1 re-

sults in,
ts = S(ABc + An). (3)

Analysis of the quantity in parenthesis explains why standard thumb-
nails appear sharp and clean, even if the input image d has blur and
noise added. First, the bandwidth of a typical blur lter B is broader
than the bandwidth of the antialiasing lter A for typical subsam-
pling factors (the ones used in our tests were between 10 and 23).
Thus AB ≈ A, in Equation 3. Considering noise next, antialias-
ing lter A applied to n will result in output ltered noise variance
much lower than the input variance, so that An ≈ 0. This is true for
typical noise levels and for any practical antialiasing lter. The case
of a k × k boxcar lter, for a subsampling factor k is particularly
easy to analyze. If the input noise is uncorrelated, the output noise
variance will be reduced by a factor of 1

k2 . For antialiasing lter,
A, the simulations in this section used a boxcar lter corresponding
to k = 10, resulting in noise standard deviation of 1

10
of the input

standard deviation.
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Fig. 1. Standard thumbnails (left column) and new thumbnails (right
column) for three different images.

With these approximations, Tsd ≈ Tsc. The standard thumb-
nail for the distorted image d will be very similar to the thumbnail
for the ideal image c for typical levels of blur and noise.

These approximations are con rmed by simulations that apply
differing amounts of blur and noise to input test images to generate
different distorted images d in Equation 1. For the matrix B, m×m
boxcar lters with m ∈ {1, 3, 5, 7, 9, 11} were applied. For the
noise, a moving average noise generated by ltering white Gaussian
noise with a 3 × 3 boxcar lter (to roughly simulate the observed
noise correlation in actual photographs [3]) was applied. The stan-
dard deviation of the noise was set to σn ∈ {0, 2, 4, · · · , 20}. Thus,
for each test image, this generates a set of images dij indexed by
blur and noise, that include the original and 65 distorted versions
with differing amounts of blur and noise.

Considering the original image c as a vector in a very high di-
mensional space, a distorted image may be expressed as the addition
of two vectors to the original image, given by,

d = c + (Bc − c) + n = Bc + n. (4)

This equation shows that the noise component is independent of the
input image, but that the blur distortion will depend on image con-
tent. Higher spatial frequency content in the input image results in
more blur distortion.

The mean square error (MSE) between a distorted image dij ,
and undistorted image c ≡ d00, is proportional to the square norm
between the images interpreted as vectors, given by 1

N
‖ c−dij ‖2,

where N is the total number of pixels in the image.
Figure 3 plots the MSE between each distorted image and the

undistorted version. Two different images, each with 1024 × 1280
pixels, are used in the simulations, to illustrate the changing nature of
the blur, depending on image content. The image of the water plants
on the left has typical spatial frequencies, but the image of the ground
cover on the right has higher spatial frequencies, that are seen in the
gure by observing the faster increase of MSE along the blur axis of

the ground cover image. Since the blur and noise are independent,
the MSEs add for images with both blur and noise. It is also seen that
the noise only component of MSE is image independent, by viewing
the graphs along the noise axis.

Figure 4 plots the MSE of thumbnails, of size 102 × 128 pix-
els, (subsampling factor k = 10) generated by our new approach as
well as standard thumbnail MSEs. The mean square errors shown in

Fig. 2. Cropped portions of the three originals

each plot are between the reference thumbnail, for the input image
without blur and noise, and the thumbnails for the other simulated
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Fig. 3. Mean square errors for two different images
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Fig. 4. Mean square errors for thumbnails

images. Relevant to the discussion in this section, the bottom plots
of the gure show the surfaces for the standard thumbnails are near
zero for all the different thumbnails (corresponding to the different
input images dij). The thumbnails are also observed to be visually
very similar, showing neither blur nor noise.

4. NEW THUMBNAILS

The new thumbnails, tn , are generated by starting rst with the stan-
dard thumbnail, which was shown in the previous section to be clean
even for distorted input images. To this standard thumbnail, blur and
noise are applied to correspond to the blur and noise in the original,

tn = tb + nt = Btts + nt. (5)

Our work takes advantage of prior work on the very dif cult
problems of image denoising [4] and blind deconvolution [5], where
the goal is to recover c in Equation 1 from d. The goal for our work,
however, is to generate a low resolution thumbnail tn, not the exact
reconstruction of high resolution c. This changes the requirements
of our component algorithms. For example, our solution works well

with both shake and defocus blurs, by applying an appropriate space-
varying Gaussian blur. The details of the applied blur kernel is not
critical to our results. Similarly for noise, we do not need an ex-
tremely accurate noise estimate, but rather a rough, fast one may be
suf cient.

Input image

Standard 

thumbnail

Extract noise 

image

Extract blur
Jittered Subsample

Apply space-

varying filter
Add

New thumbnail

Fig. 5. To generate a new thumbnail, we start with a standard thumb-
nail and use image analysis to estimate and apply local blur and
noise.

Figure 5 shows the processing that generates the new thumb-
nails. The Extract blur block results in a two dimensional thumbnail
resolution blur map, m, with estimates of the amount of blur at each
location. The block Apply space-varying lter applies a lter based
on the blur map. This local computation accounts for depth of eld
as well as undesired blurs. The blur map is determined without iden-
ti cation of the type of blur. The assumption is that users will not
be able to distinguish between different types of blur in a thumbnail
very easily.

The local amount of blur is computed by noting that the image
edge pro les differ between sharp and blurry images. At an edge, for
example, the pro le of a blurry high resolution image wil be more
gradual than its corresponding low resolution standard thumbnail,
ts, whose pro le will be steeper [6]. Applying successively larger
blurs to ts will cause its edge pro le to become more gradual, and
to correspond better to the blurry original. To have the system work
with various image features, and not just edges, the computation is
based on pixel range (difference between maximum and minimum
pixel values in a spatial neighborhood) to determine the local image
pro les.

During the building of the blur map, a set of Gaussian ltered
low-pass versions of the standard thumbnail, lσ are created,

lσ = gσ ∗ ts. (6)

Eleven lσ, with σj ∈ {0, 0.5000, 0.7111, 0.9222, 1.1333, · · · , 2.4},
are generated. The image l0 represents the unblurred thumbnail ts.
The remaining images correspond to increasing blurs, starting with
σ = 0.5, ending with σ = 2.4 and with increment 0.2111.

From the original image, d, a low resolution range map, is com-
puted. First, the maximum absolute difference for each center pixel
and its eight neighbors is calculated. This high resolution range map
is reduced to thumbnail size by taking the maximum in a high reso-
lution neighborhood of the same size as the resampling factor k. The
low resolution original range map is called ro.

Similarly, from each of the images lσ, a low resolution range
map, rσ , is generated. The blur map value at each pixel index, i, is
then computed using

m(i) = min
j

{j | rσj (i) ≤ ρro(i)}, (7)
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where ρ is a constant that sets the amount of blur added. Equation 7
implements the idea, described earlier, of re ecting in the thumb-
nails the local pixel range found in the high resolution original. Us-
ing this blur map, at each pixel, i, a space-varying blurred thumbnail
tb, the rst term in Equation 5, is created by selecting values from
the appropriate blurred thumbnail,

tb(i) = lσm (i). (8)

More accurate blur maps and space-varying lter implementations
are possible [7], but this simple approach has worked well with the
tested images.

For the noise component, nt, a simple, modi ed wavelet based
soft thresholding [8] (known as VisuShrink), was used. Although su-
perceded for traditional denoising applications, this simple approach
is suitable for our application.

The noise residual is based on a high-pass ltered original, h =
d − g1 ∗ d, where g1 is a Gaussian lter with σ = 1. Following
Donoho, the high resolution noise, n̂ at each pixel i, is estimated
using

n̂(i) = h(i) − sgn(h(i))(|h(i)| − λ)+, (9)

with x+ = x if x ≥ 0 and x+ = 0 if x < 0.
The threshold λ is determined by rst estimating noise standard

deviation, σ̂n = hm/.6745, where hm is the median of absolute
values of the pixels |h(i)|. Then, threshold λ = 1.6σ̂nlog(N) is
used, where N is the number of pixels in the original. The factor
1.6 is an empirical gain adjustment to account for noise correlation
typically seen in digital photographs [3]. The same xed factor was
used for all of the images.

From n̂, the low resolution thumbnail noise nt in Equation 5 is
generated by subsampling. The subsampling of the noise component
is justi ed by considering the autocorrelation of a discrete time, sta-
tionary Gaussian noise process after subsampling. In particular, the
noise or variance will remain unchanged after subsampling on a reg-
ular sampling grid. The noise generation process used is not perfect,
however, allowing some high spatial frequency signal to appear in
the noise image. Jittered sampling [9] was used to breakup potential
Moire (observed in only two of the images) from any residual image
textures that appear in the noise image.

Our research software generated new thumbnails on a 2 Giga-
hertz Pentium IV laptop in around .14 second per image.

The top plots of Figure 4 show the MSEs for the new thumbnails,
comparing the thumbnail of each distorted input image, dij , with
the new thumbnail for the image without blur and noise, c. These
plots show that the new thumbnails discriminate much better than the
plots for the standard thumbnails shown in the bottom of the gure.
The slight dip observed in the plots at high blur levels show that the
blur estimation is somewhat sensitive to noise. The MSEs, however,
show that signi cant blur is still present in the thumbnails. Noise
resistant blur estimation [6] may provide improvements to the plots.
On the other hand, careful visual study of the interaction of blur and
noise may show that for noisy images, correct blur estimation is not
critical to image quality determination.

5. SUBJECTIVE EVALUATION AND CONCLUSION

Figures 1 and 2 show thumbnail comparisons and originals for three
examples that are best viewed in the original PDF document. The
top image shows an example where the new thumbnails and stan-
dard thumbnails are indistinguishible for a good quality image. In
the middle image, the hands, yellow owers and red butter y in the
middle image are misfocused, as is seen in the new thumbnail, but

not the standard thumbnail. The bottom image is noisy, as seen in the
new thumbnail, but not the standard thumbnail. The originals shown
in Figure 2 are cropped to save space while showing the thumbnails
and originals at the correct relative scales.

A subjective comparison of the thumbnails using four input im-
age categories, Blurry, Clean, Noisy and Textured, and twenty judges
is reported in an externally accessible report [10]. The judges were
asked to determine which thumbnail version of a pair best repre-
sented the original full resolution image.

The results of the evaluation, even without algorithm parame-
ter tuning, are encouraging. The study found that the new thumb-
nails are more representative of their originals for blurry images. In
addition, there are no signi cant differences between the results of
the new thumbnails and the standard thumbnails for clean images.
The noise component improves the results for noisy images, but de-
grades the results for textured images. The blur component of the
new thumbnails may always be used. The decision to use the noise
component of the new thumbnails, nt in Equation 5, should be based
on testing with the particular image mix expected for the application.
Future work may develop a noise component that better separates be-
tween noise and texture, allowing the noise component to always be
used without degrading textured images.

Thumbnail generation, with its less exacting requirements, may
be well suited for application of techniques developed for more tra-
ditional deblurring and denoising applications.
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