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ABSTRACT

Bag-of-words representation has shown to be a powerful tech-

nique for image classification. In this paper, we propose a

new approach to discover the discriminability of each visual

word (image feature) in the codebook for each image cate-

gory. A general linear model (GLM) is employed to construct

new histograms of the images which are the basis for image

classification. We also discuss the relations between our ap-

proach and boosting approaches and non-negative matrix fac-

torization (NMF).

Index Terms— discriminative, signature, image classifi-

cation

1. INTRODUCTION

A popular technique in text classification, bag-of-words rep-

resentation [1], has been applied to images in recent years.

The basic idea of bag-of-words is to create a word-document

co-occurrence matrix, where the visual words (image features)

are the elements of the codebook formed by the training im-

age data. These visual words can be considered independent

of each other in the vector space. Our approach attempts to

discover the category discriminability of each visual word in

the codebook based on this matrix. Then these visual words

are combined to form new visual terms with better discrim-

inability which can result in the improvement of image classi-

fication. For combining visual words, we use a general linear

model (GLM) to construct the visual term histogram of each

image. After this, a classification method, e.g. SVM, Prob-

abilistic Latent Semantic Analysis (pLSA) [2], is employed

to classify the images based on these new histograms. In the

following sections, we use “VW” and “VT” to refer to visual

word and visual term respectively, and use “signature” to re-

fer to the VW or VT histogram of an image.

The rest of the paper is organized as follows. In Section 2,

our approach, Discriminative Signatures (DS), is explained in

details. In Section 3, we explain the relations between our ap-

proach and boosting approaches [3] and non-negative matrix

factorization (NMF)[4]. In Section 4, we show our experi-

mental results for image classification. Section 5 concludes

the paper.

2. DISCRIMINATIVE SIGNATURES

In this section, we will explain our approach, Discrimina-
tive Signatures (DS). The basic idea is to group different se-

lected VWs to form more discriminative VTs so that the inter-

category distance, SB , can be maximized while the intra-

category distance, SW , can be minimized. Also we employ

GLM to construct the new image signatures.

2.1. General linear model

A general linear model (GLM) is a model which explains the

response variable yi in terms of a linear combination of the

explanatory variables xi,j plus an error term εi. That is,

yi = α1xi,1 + α2xi,2 + · · · + αjxi,j + εi (1)

where αk(k ∈ {1, · · · , j}) is a coefficient of explanatory

variable xi,k.

In the form of matrices, a GLM can be described as below.

Y = αX + ε (2)

where Y denotes the response variable matrix, X denotes the

explanatory variable matrix, α denotes the coefficient matrix

of X and ε denotes the error term matrix.

In our case, Y is the new VT-document matrix, X is the

original VW-document matrix, and α is the transform matrix.

We suppose ε = 0, and our goal is to find an optimal α so

that SB can be maximized while SW can be minimized as

calculated using Y.

2.2. Objective function

We take the ratio of SB to SW as our main objective function,

that is,

L =
SB

SW
(3)

and α is optimal if it maximizes the ratio. So we have

L(α) = max
α

{ SB

SW
} (4)
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The definitions of SB and SW are

SB =
∑

c

(μc − x)T (μc − x) (5)

SW =
∑

c

∑
r∈c

(xr − μc)T (xr − μc) (6)

where,

μc =
1

Nc

∑
r∈c

xr (7)

x =
1
N

∑
r

xr =
1
N

∑
c

Ncμc (8)

Here, μc denotes the average signature of category c, x de-

notes the average signature of all the training images, xr de-

notes the signature of image r in the word-document matrix

X, r ∈ c means image r in category c, Nc is the number

of training images in category c, and N is the number of all

training images.

In our case, the matrix α should also satisfy the following

conditions.

Condition 1: Non-negative Because the VTs are created by

combining some of the VWs without subtraction,

every element in α should be no less than zero.
Condition 2: Equal-sum The rows of α can be divided into

C sets where C is the number of categories (one set,

per category), and in each set the sum of the elements

in each row should be approximately equal. This

ensures that in each category each VT will have

similar discriminability for this category.

So, our final objective function is

L(α) = max
α

{ SB

SW
} (9)

s.t.

{
αij ≥ 0 i ∈ {1, · · · , m}, j ∈ {1, · · · , n}∑n

j=1 αij = wc i ∈ {1, · · · , mc}, c ∈ {1, · · · , C}
where m and n are the numbers of rows and columns of α,

respectively, mc is the number of rows in set c, and wc is

the pre-calculated sum of each row in set c (Please refer to

Algorithm 1, Step 2 (a) and (b)).

2.3. Upper bound of L(α)

Considering the complexity of our objective function, we would

like to find a fixed upper bound of L(α) instead of its maxi-

mization. Let pc =
∨{0, μc − x} and qc

r =
∨{0, xr − μc}

which are calculated from the training set of X. Here, “
∨

”

denotes the operation that the maximal value of each element

at the same position in the vectors is picked out. Then we can

rewrite SB and SW , which are calculated from Y, as below.

SY
B =

∑
c

(pc)T αT αpc =
∑

c

∑
i,j,k

pc
ip

c
jαkiαkj (10)

SY
W =

∑
c

∑
r∈c

(qc
r)

T αT α(qc
r)

=
∑

c

∑
r∈c

∑
i,j,k

qc
irq

c
jrαkiαkj (11)

where pc
i is the ith element in signature pc, qc

ir is the ith ele-

ment in signature qc
r, αki is the element in α whose row is k

and column is i.
Now we will prove that a fixed upper bound of L(α) ex-

ists.

Statement 1 There exists a fixed upper bound of L(α).
Proof:
Let βc =

P
r∈c

P
i,j,k qc

irqc
jrαkiαkjP

r∈c

P
i,j,k qc

irqc
jr

, where βc is a positive

constant when every qc
ir and αki are known. Then SY

W can
be rewriten in the following way.

SY
W =

∑
c

βc

∑
r∈c

∑
i,j,k

qc
irq

c
jr (12)

Further, let q̂c
i =

√
1

Nc

∑
r∈c(q

c
ir)2 and

λc =
P

r∈c

P
i,j,k qc

irqc
jrP

r∈c

P
i,j,k bqc

ir bqc
jr

, where λc is a positive constant when
every qc

ir is known. So Equ.(12) can be rewritten as below.

SY
W =

∑
c

λcβc

∑
i,j,k

q̂c
i q̂

c
j (13)

When every q̂c
i is known, Equ.(13) can be rewritten as below.

SY
W =

1
θ

∑
c,i,j,k

q̂c
i q̂

c
j (14)

where θ is a positive constant. Therefore,

L(α) =
SY

B

SY
W

=

∑
c,i,j,k pc

ip
c
jαkiαkj

1
θ

∑
c,i,j,k q̂c

i q̂
c
j

≤ θ
∑

c,i,j,k

pc
ip

c
jαkiαkj

q̂c
i q̂

c
j

≤ θ
∑

c,i,j,k

(
pc

iαkj

q̂c
i

)2 (15)

The equation holds only when

αki =
pc

i

q̂c
i

(16)

Then we can get the following inequality.

L(α) ≤ θ
∑

c,i,j,k

(
pc

ip
c
j

q̂c
i q̂

c
j

)2 (17)

This is a fixed upper bound of L(α).

Here we call αki = pc
i

bqc
i

the category discriminability of
V Wi.
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2.4. Transform matrix α

Here we will address this question: how to create the trans-

form matrix, α, so that it can satisfy both conditions in (2.2).

Let us recall a set of classical problems: subset sum problems
(SSP)[5].

Definition 1 Subset sum problems
Given positive integers c1, · · · , cm, s, we wish to solve the
equation

∑m
i=1 cixi = s with x1, · · · , xm ∈ {0, 1}.

Our problem is similar to SSP, replacing integers with rational

numbers. As we know, SSP is NP-Complete, and the compu-

tational complexity is exponential in the smaller of two pa-

rameters, the number of decision variables, U , and the pre-

cision of the problem, V . In our case, U is the size of the

original visual codebook which is usually quite large, and V
should be as high as possible. So even if we use optimal al-

gorithms for SSP to solve our problem, it still needs a lot of

computational time.

Thus we propose an algorithm to create α efficiently. We

use greedy search strategy to find the elements of α such that

α satisfies both conditions. Also we need to pre-define a pa-

rameter, Category Row Number (CRN), η, which limits the

number of rows in α to η ∗C. The computational complexity

is linear in U . The algorithm is described below.

Algorithm 1 Greedy search strategy for computing α.

1. Pre-define CRN, η, to control the number of rows in α.
2. For category c,

(a) Referring to Eq. (16), calculate pc
i

bqc
i

for each VW
using the training VW-document matrix.
(b) Calculate wc using wc = 1

η

∑
i

pc
i

bqc
i

.

(c) Sort pc
i

bqc
i

in descending order, and then select one item
at a time beginning from the top.
(d) Beginning from the first row of α, fill the selected
element i in column i of the row. Fill the next row when
the sum of the present row just exceeds wc.

3. Repeat Step 2 for all the categories.

3. RELATION TO OTHER APPROACHES

Here we compare our approach with boosting approaches [3]

and non-negative matrix factorization (NMF) [4].

Our method can be considered as a simplified version of

boosting approaches. In traditional boosting approaches, an

additive model is used to create response variables by com-

bining explanatory variables. Some adaptive methods, such

as Expectation Maximization (EM), are usually employed to

learn the parameters in the additive model. However, in our

approach we use statistical methods instead of adaptive meth-

ods to learn the parameters, which makes our approach much

faster. Also in our approach we take the category discrim-

inability of each VW as the weight, similar to those used in

boosting approaches, and combine the boosted VWs together.

In NMF, it decomposes the word-document matrix into

more basic part-document matrices, which are also linear rep-

resentations of non-negative data. However, due to the differ-

ent purposes, the learning methods are different. NMF uses

adaptive methods while ours uses statistical methods. NMF

tries to describe objects with more detail features, so it is more

suitable for object recognition, such like face recognition. In

contrast, our approach tries to describe objects with the com-

bination of different discriminative VWs, so our approach is

more suitable for image classification.

4. EXPERIMENTS

We use the Caltech image database [6] to evaluate our ap-

proach. It comprises five categories: motorbikes (826 im-

ages), faces (450 images), airplanes (1074 images), cars (rear)

(1155 images) and background (900 images).

In our experiments, all images are gray-scale and 300-

pixel wide. Each dataset is split randomly into two separate

sets with equal size, training set and test set, for each run of

the program. To describe each image, we extract the local im-

age regions using the saliency region detector[7]. Each local

region is resized to 16*16 pixels, and further divided into 4*4

smaller regions, each with 4*4 pixels. Each smaller region

is then represented by a 8-dimension gradient bins similar to

SIFT descriptor[8]. Concatenating these 16 smaller region

descriptors together and normalizing the vector, we obtain a

normalized 128-dimension vector for each local region. Then

we use k-means to cluster the region descriptors in the training

set to form a codebook and use VQ to create signatures of all

the images based on the codebook. After using our approach

to construct the new signatures, pLSA (code from [9])is em-

ployed to classify the images. For the EM in pLSA, the max-

imal number of iterations is 100, and the minimal allowable

likelihood change is 1. We fix the size of the codebooks to

1000, and CRN is 15 empirically. All the results shown are

the average of 50 runs.

We assess our approach in: (a) discriminability of signa-

tures, (b) image classification.

4.1. Discriminability of signatures

Table 1 shows the extent of improvement in the discriminabil-

ity of signatures, where OS is short for original signatures.

The results shown are the values of L, calculated by Eq.(3),

(5) and (6) using inter-category distance and intra-category

distance, and the percentage of improvement (PI). The val-

ues in the OS column and DS column are calculated by the

original signature matrix (X) and the discriminative signature

matrix (Y ), respectively. We can see that the discriminability

of the signatures has been enhanced greatly through our ap-

proach.
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Table 1. Comparison of discriminability

Value of L(α) (∗10−4)

Category OS DS PI (%)

Motorbikes + Background 0.8 5.6 600

Faces + Background 1.4 8.1 479

Airplanes + Background 1.2 6.5 442

Cars (rear) + Background 1.0 6.1 510

4.2. Image classification

We compare our results with those in [6] using Receiver Op-

erating Characteristic (ROC) curves.

For binary classification (i.e.foreground vs. background),

the results of Areas Under the Curves (AUCs) are shown in

Table 2. Comparing DS with OS, we can conclude that our

approach (DS) does improve the performance of image clas-

sification greatly, and also our results are better than [6] ex-

cept for the airplanes category. The reason is probably be-

cause relatively fewer image regions are extracted from the

airplanes category than from other categories, which can af-

fect the performance of classification greatly. On average, 37

regions are extracted from an image in the airplanes category

while 46, 59, 66, 46 regions, respectively, for category faces,
motorbikes, cars(rear) and background. Similar observations

are made in multi-class classification.

For multi-class classification, we show and compare our

results with those in [6] using different categories and differ-

ent numbers of topics in pLSA. See Table 3, where “Cat.” de-

notes the categories used in the experiments, “T” denotes the

number of topics in pLSA, “M”, “F”, “A”, “CR” and “bg” de-

note the categories of motorbikes, faces, airplanes, cars(rear)

and background, “Ave. acc.” denotes average accuracy. From

the average accuracy, we can see that except for the first case,

our results are all better than those in [6]. Moreover, with the

increase in the number of topics under “4 + bg” categories,

our results are more stable. This demonstrates that based on

our discriminative signature matrix, pLSA can also find suit-

able topics for the categories when the number of topics are

more than that of the categories.

Table 2. Comparison of binary classification (%)

Dataset DS OS PI(%) Sivic et al.[6]

Motorbikes 96.8 86.2 12.3 84.6

Faces 96.5 89.3 8.1 94.7

Airplanes 90.1 89.6 0.6 96.6
Cars (rear) 99.1 98.7 0.4 78.6

Table 3. Comparison of multi-class classification (%)

Cat. T DS Ave. acc.

M F A CR bg DS [6]

4 4 98.6 99.4 86.8 98.9 × 96 98
4 + bg 5 94.5 97.8 86.1 98.2 70.4 89 78

4 + bg 6 95.1 98.0 86.4 93.5 79.0 90 76

4 + bg 7 96.8 98.1 86.9 97.1 69.2 90 83

5. CONCLUSION

In this paper, we propose a new approach, Discriminative
Signature, to create more discriminative signatures for im-

ages by combining selected visual words for each category.

Our results show that the discriminability of the visual terms

is greatly enhanced, leading to better performance in image

classification.
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