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ABSTRACT
In this paper, we present an iterative approach to Fisher dis-
criminant analysis called Kullback-Leibler discriminant anal-
ysis (KLDA) for both linear and nonlinear feature extraction.
We pose the conventional problem of discriminative feature
extraction into the setting of function optimization and re-
cover the feature transformation matrix via maximization of
the objective function. The proposed objective function is de-
fined by pairwise distances between all pairs of classes and
the Kullback-Leibler divergence is adopted to measure the
disparity between the distributions of each pair of classes.
Our proposed algorithm can be naturally extended to handle
nonlinear data by exploiting the kernel trick. Experimental
results on the real world databases demonstrate the effective-
ness of both the linear and kernel versions of our algorithm.

Index Terms— Linear Discriminant Analysis, Kernel Fisher
Discriminant Analysis, Kullback-Leibler Divergence, Opti-
mization

1. INTRODUCTION

Discriminant Analysis methods have been studied for many
years within the pattern recognition community. The aim is to
find a transformation of the input data to a lower dimensional
subspace which best discriminate between different classes.
Conventional Linear Discriminant Analysis (LDA) works

by simultaneously maximizing the between-class scatter and
minimizing the within-class scatter for the transformed data[1].
The use of scatter matrices offers much computational advan-
tage by reducing the original problem to generalized eigen-
value decomposition, but conceptually, it is quite restricted in
the modeling power. First, LDA assumes each class satisfy a
Gaussian distribution with equal covariance matrices, so that
a unique within-class scatter matrix can be used to represent
the average variance of data distribution within each class.
This is, however, a very strong assumption, as real-world data
are very complicated and different classes may have different
distributions. Second, LDA is optimal for binary classifica-
tion [2]. For multiclass classification, it uses single within-
and between-class scatter matrices to represent the variations
within and between different classes without considering the
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pairwise relationships between any two classes. The resulting
transformation may overemphasize well-separated classes but
is not optimized to distinguish between overlapping classes
which are relatively harder to classify and should be paid
more attention.
Various extensions of LDA [3, 2, 4] have been proposed

to handle the above two problems. Heteroscadastic Discrim-
inant Analysis (HDA) was proposed in the previous study on
LDA [3, 4], which aims at relaxing the equal covariance con-
straint and modeling the variability in class conditional distri-
butions. Pairwise discriminant analysis [2] was proposed to
remedy the class-balance problem by employing an objective
function defined for all pairs of classes. However, most of
these methods still much rely on the scatter matrices and an
equal within-class scatter matrix was used anyway.
In this paper, we proposed a new approach, called KLDA,

to pairwise heteroscadastic discriminant analysis. Instead of
using within- and between-class scatter matrices to measure
the separability between different classes, we used the infor-
mation theoretic Kullback-Leibler (KL) divergence measure
as an indicator for class separability [5]. We then treat Fisher
discriminant analysis as an optimization problem, where the
objective functionis derived by accumulating the divergence
values for all pairs of two classes. The optimal feature trans-
formation matrix is attained at the local maximum of the ob-
jective function through an iterative optimization process.In
contrast to previous approach which utilizes Chernoff dis-
tance to rectify the between-class scatter matrix rather than
employing it as the class separability measure [4], our ap-
proach maximizes pairwise class separability directly in terms
of the sum of KL divergences, and hence is theoretically opti-
mal. Moreover, KL divergence also has a simpler partial dif-
ferential term with respect to the transformation matrix com-
pared to the Chernoff distance, which makes the iterative up-
date process computationally more efficient. Our algorithm
can also be generalized to the kernel version to handle lin-
early inseparable data via the kernel trick.
The remainder of this paper is organized as follows. Sec-

tion 2 presents the main algorithm of Kullback-Leibler Dis-
criminant Analysis, including both linear and kernel KLDA.
Section 3 presents experimental results on two real-world data-
bases on image labeling and character recognition. Conclu-
sions are given in the last section.
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2. KULLBACK-LEIBLER DISCRIMINANT
ANALYSIS (KLDA)

2.1. Preliminaries

LDA We first define the generic problem of linear fea-
ture extraction for classification treated in this paper. Given
the training data xi ∈ RD (i = 1, . . . , N ) the purpose is to
find a transformation matrix A ∈RD×d that projects the in-
put vector xi to the point yi = AT xi in a lower dimensional
feature spaceRd(d�D) so as to maximize certain optimality
criterion. This is often posed as an optimization function over
the transformation matrixA. LDA is one such method which
minimizes the following cost function,

min f(A) = tr((AT SwA)−1(AT SbA)) (1)

Sw =
c∑

j=1

∑

xi∈Cj

(xi − μj)(xi − μj)T

Sb =
c∑

j=1

nj(μj − μ)(μj − μ)T

where c is the number of different classes, Cj denotes the set
of samples in class j, μj and μ are the mean of class j and the
sample mean respectively, and nj is the size of class j. Sw

and Sb represent the within and between-class scatter matri-
ces respectively. They can be viewed as the average class-
specific covariance and mean distance over all the classes.
The purpose of Equation 1 is to maximize the between-class
scatter while preserving within-class dispersion in the trans-
formed feature space. Its solution can be obtained by solving
the generalized eigenvalue problem SbA = λSwA and tak-
ing the eigenvectors corresponding to the leading eigenvalues
of S−1

w Sb. In the implementation of LDA, a regularization
parameter is usually added to the diagonal elements of Sw

for numerical stability. This is especially important for small
sample size problems where Sw is near singular.
KFDA KFDA is a nonlinear extension to LDA [6]. The
idea is to map the input data to a higher-dimensional nonlin-
ear feature space as denoted by φ : RD→H, called the Re-
producing Kernel Hilbert Space (RKHS), and then perform
LDA in the feature space instead. Though the explicit form
of mapping is unknown, the inner product in the RKHS can
be represented in closed form by the kernel function defined
over input vectors k(x,y) =< φ(x), φ(y) >. Moreover, the
projected samples φ(xi) form a set of bases for the RKHS,
and any vector in the RKHS can be represented by the lin-
ear combination of these bases. Hence the projection from
the RKHS to the output space is given by W = Φ(X)A =
[φ(x1), . . . , φ(xN )]A, where A is the coefficient matrix for
the linear combination. Then KFDA can be formulated as the
following optimization problem,

min f(A) = tr((AT Φ(X)T Φ(X)SwΦ(X)T Φ(X)A)−1

(AT Φ(X)T Φ(X)SbΦ(X)T Φ(X)A))
= tr((AT KSwKA)−1AT KSbKA) (2)

Sw =
c∑

j=1

(Id − ejeT
j /nj)(Id − ejeT

j /nj)T

Sb =
c∑

j=1

(ej1T
nj
− 1N1T

nj
)(ej1T

nj
− 1N1T

nj
)T /nj

where Id is the identity matrix, ej is the indicator vector for
class j such that ej(i) = 1 if xi ∈ Cj and otherwise ej(i) =
0, 1n denotes a column vector of length n with straight 1s. K
is theN×N Gram matrix whose (i, j)th entry is given by the
kernel function k(xi,xj). It can be clearly seen that the cost
function of KFDA as defined above share a similar form as
the cost function for LDA defined in Equation 1. Hence the
transformation matrix A can be obtained, again, by solving
a generalized eigenvalue decomposition problemKSbKA =
λKSwKA and taking the leading eigenvectors.

2.2. Linear KLDA

In this section, we define our new objective function for doing
discriminant analysis in a pairwise fashion. We make use of
the KL-divergence as a measure of separability for any two
classes by viewing them as probabilistic distributions of the
training data. The objective function is defined as the sum of
KL-divergences between all pairs of classes as follows

max f(A) =
c−1∑

i=1

c∑

j=i+1

wiwjKL(pi(AT x), pj(AT x)) (3)

where pi(AT x) and pj(AT x) denotes the sample distribu-
tions of classes i and j after linear transformation by matrix
A, wi∞ni and wj∞nj are prior probability of classes i and
j to balance between different sized classes. Then the optimal
transformation matrixA can be found at the maximum of the
objective function defined above.
The original KL divergence as first proposed in [5] is an

asymmetric distance measure. Here we adopt a symmetric
version of it for measuring the disparity between two distri-
butions pi(x) and pj(x), which is defined as follows

KL(pi(x), pj(x)) =
∫

(pi(x)− pj(x)) log
pi(x)
pj(x)

dx (4)

Assume both pi(x) and pj(x) satisfy Gaussian distributions,
the KL divergence can be expressed in closed form

KL(pi(x), pj(x)) = (μi − μj)T (Σ−1
i + Σ−1

j )(μi − μj)

+ tr(Σ−1
i Σj + Σ−1

j Σi − 2Id) (5)

where μi, μj are the mean vectors of Gaussian distributions
for pi(x) and pj(x), Σi and Σj are the covariance matrices.
Both the mean vectors and covariances matrices can be es-
timated using sample mean and sample covariance from the
training data.

μ̂j =
∑

xi∈Cj

xi/nj (6)

II - 202



Σ̂j =
∑

xi∈Cj

(xi − μj)(xi − μj)T /nj + λId (7)

where λ is the regularization parameter added to make the
matrix inverse operation numerically more stable.
With the transformation matrixA, the mean μ̂ and the co-

variance matrix Σ̂ convert to AT μ̂ and AT Σ̂A in the trans-
formed feature space. The KL divergence for the transforma-
tion is thus given by

kli,j = μ̂T
i,jA((AT Σ̂iA)−1 + (AT Σ̂jA)−1)AT μ̂i,j (8)

+tr((AT Σ̂iA)−1(AT Σ̂jA)+(AT Σ̂jA)−1(AT Σ̂iA)−2Id)

where kli,j is short forKL(pi(AT x), pj(AT x)), and μ̂i,j =
μ̂i − μ̂j denotes the distance between two centroids in the
input space.
Each kli,j is a non-convex function ofA, so the objective

function in Equation 3 is non-convex. However, we can still
attain the local maximum through gradient based iterative op-
timization procedure given the initial estimate ofA, which is
obtained from the conventional LDA procedure. The gradient
of kli,j with respect toA is given by

∇Akli,j = ∇(1)
A kli,j +∇(2)

A kli,j (9)

∇(1)
A kli,j = 2μ̂i,j μ̂

T
i,jA((AT Σ̂iA)−1+(AT Σ̂jA)−1) (10)

− 2Σ̂iA(AT Σ̂iA)−1AT μ̂i,jμ̂
T
i,jA(AT Σ̂iA)−1

− 2Σ̂jA(AT Σ̂jA)−1AT μ̂i,j μ̂
T
i,jA(AT Σ̂jA)−1

∇(2)
A kli,j = 2Σ̂jA(AT Σ̂iA)−1 + 2Σ̂iA(AT Σ̂jA)−1 (11)

− 2Σ̂iA(AT Σ̂iA)−1AT Σ̂jA(AT Σ̂iA)−1

− 2Σ̂jA(AT Σ̂jA)−1AT Σ̂iA(AT Σ̂jA)−1

Hence the total gradient of the objective function defined
in Equation 3 with respect toA is given by

∇Af(A) =
c−1∑

i=1

c∑

j=i+1

wiwj∇Akli,j (12)

For iterative optimization, we employ the conjugate gradi-
ent algorithm to obtainA given the above gradient.Compared
to other iterative optimization procedures, conjugate gradient
has faster convergence rate than first order methods and less
complexity than second order methods. For the iterative LDA
problem we studied, it takes less than 10 steps and a few sec-
onds to converge. The details of conjugate gradient algorithm
is beyond the scope of this paper and can be found in [7]. The
resulting algorithm is described in Figure 1.

2.3. Kernel KLDA

The generalization to kernel KLDA is quite straightforward
by employing the kernel trick. The only difference is that we
compute the KL divergence for the transformation of the data
embedded in the RKHS.

Input: dataX = [x1, . . . ,xn], tmax.
• Perform conventional LDA/KFDA algorithm to obtain an
initial transformation matrixA0. Set t = 0.

• Run conjugate gradient algorithm to minimize the objective
function defined in Equation 3.
– Calculate the gradient∇At via Equations 6-12.
(For kernel KLDA, use Equations 15 – 16 instead of
Equations 6 – 7)

– Set g0 = ∇A0 and h0 = g0 if t = 0.
– Find λt that maximizes f(At +λtht) along direction ht.
– Update At+1 = At + λtht, gt+1 = ∇f(At+1) and

ht+1 = gt + γtht, where γt =
gt+1 · gt+1

gt · gt
.

– Increment t and repeat the above steps. Quit if t > tmax,
or either |f(At+1 − f(At)| or ||At+1 − At|| is suffi-
ciently small.

Output: transformation matrixAt.

Fig. 1. Kullback-Leibler Discriminant Analysis

First, the sample mean vector and the covariance matrix
for class j in the RKHS is given by

μ̂
′
j =

∑

xi∈Cj

φ(xi)/ni = Φ(X)ei/ni (13)

Σ̂
′
j =

∑

xi∈Cj

(φ(xi)− μ̂
′
j)(φ(xi)− μ̂

′
j)

T /ni (14)

=
∑

xi∈Cj

Φ(X)JiΦ(X)/ni

Ji = diag(ei)− eieT
i /ni

where ei is the indicator vector for class i defined earlier,
diag(ei) denotes the diagonal matrix with ei as its diagonal
elements. Equation 14 is derived based on the fact that Ji is a
projection matrix such that JiJ

T
i = Ji.

Here again, the transformation matrix W can be repre-
sented in terms of a linear combination ofΦ(X) and specified
byW = Φ(X)A, then we have

WT Σ̂
′
iW = AT KJiKA

Instead of solving W, we treat A as the new unknown
variable to be solved. Next we define

μ̂i,j = ei/ni − ej/nj (15)
Σ̂i = KJiK + λId (16)

It is now straightforward to see that the linear KLDA algo-
rithm outlined in Figure 1 can be generalized to the kernel al-
gorithm with minimal changes by substituting μ̂i,j and Σ̂i(j)

in Equations 6 - 7 with their new values defined in the above
equations.
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Table 1. Results for Multispectral Image Classification
5% 10% 20%

Test LDA 22.77± 1.26% 18.56± 0.90% 15.92± 0.42%

Error L-KLDA 20.55± 1.67% 16.26± 1.05% 12.28± 0.50%

p-value 1.4817e− 04 8.9547e− 05 1.3584e− 08

Test KFDA 16.20± 0.89% 12.45± 0.59% 10.48± 0.36%

Error K-KLDA 15.64± 0.80% 11.88± 0.65% 9.65± 0.52%

p-value 7.2504e− 04 2.6925e− 05 5.5879e− 06

3. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of our algo-
rithm for classification in two different applications. The first
application is supervised image labeling for multispectral im-
ages. The second application is handwritten digit recogni-
tion. For both applications, we applied both our linear and
kernel KLDA algorithm for feature transformation and com-
pared them with the conventional LDA and KFDA.
To make the comparison on an equal basis and statistically

meaningful, for each application, we compared for different
sample sizes by using 5%, 10% and 20% of all labelled sam-
ples for training and the rest for testing. For each sample
size, we repeated the test 10 times, each time with a differ-
ent random partition of the training and testing data. Both
LDA and KFDA under comparison are properly regularized
to make the scatter matrices well-conditioned, with the regu-
larization and kernel parameters chosen via 5-fold cross val-
idation. The same RBF kernel and kernel parameters were
used for both KFDA and kernel KLDA methods. The near-
est neighbor classifier was employed for classification on the
extracted features from different methods.
In the first experiment, we used a multispectral image of

an agricultural area inWest Indiana, USA. The image is main-
tained by the Laboratory for Applications of Remote Sensing,
Purdue University and is available for downloading from the
web. It was captured by the AVIRIS sensor and each pixel is
associated with a reflection spectrum comprised of 220 bands
in the range 375 − 2200nm. This allows us to achieve accu-
rate pixel level classification of different material types based
on the spectral information at each pixel location. 9 classes
of different terrain types are labeled across the test image
containing a total of 9345 labeled samples. We used the re-
flectance spectra directly as input vectors and applied various
discriminant analysis algorithms to them. The test results of
different methods over varying training sample sizes are listed
in Table 1, including the mean and the standard deviation of
testing error. We also applied a paired t-test to the testing er-
rors of the 10 trials for each training sample size, and listed
the p-values of the t-test results in Table 1.
The results clearly show that our KLDA algorithms, both

the linear and kernel versions, outperformed their counter-
parts in terms of lower error rates with commensurate stability
(this is indicated by their similar standard deviations). All p-
values obtained from the t-tests, as listed in Table 1, are much

Table 2. Testing Results for Handwritten Digit Recognition
5% 10% 20%

Test LDA 22.24± 1.23% 16.30± 0.89% 13.24± 0.76%

Error L-KLDA 18.18± 1.11% 13.91± 0.86% 11.89± 0.49%

p-value 7.9012e− 07 2.4691e− 05 1.1266e− 04

Test KFDA 11.32± 0.45% 8.17± 0.54% 6.55± 0.32%

Error K-KLDA 10.47± 0.77% 7.97± 0.38% 6.35± 0.23%

p-value 8.41e− 02 3.45e− 02 1.73e− 02

smaller than 5%. This indicates that the alternative hypoth-
esis will be accepted with 95% confidence, that the testing
results come from different distributions and their differences
are statistically significant, which evidences the superiority of
the proposed algorithms over the conventional ones.
In the second experiment, we tested the performance of

KLDA for handwritten digit recognition. We used the USPS
database of handwritten digits from 0 to 9. The database
contains 7291 gray-scale images at a resolution of 16 × 16.
We concatenated the pixels in raster scan order and formed a
256-dimensional input vector for each image. The test results
of different methods are listed in Table 2 with similar trend
as that in the previous experiment indicating improved per-
formance of our proposed algorithm over the alternatives for
both the linear and kernel versions.

4. CONCLUSIONS

In this paper, we present a novel discriminant analysis algo-
rithm for feature extraction in supervised learning. A new
objective function is proposed based on the KLdivergences
between pairs of classes. The optimal feature transformation
can be found by maximizing the objective function. The pro-
posed algorithm can also be kernelized by exploiting the ker-
nel trick. Experiments demonstrate clear improvements of
our algorithm over conventional methods.
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