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ABSTRACT
Video annotation is an expensive but necessary task for most

vision and learning problems that require building models

of visual semantics. This annotation gets prohibitively ex-

pensive especially when annotation has to happen at finer

grained levels of regions in the videos. One way around the

finer grained annotation dilemma is to support annotation at

coarser granularity and then propagate this annotation to the

finer granularity in a concept-dependent way. In this paper

we propose a new generalized multiple instance learning al-

gorithm that can work with any underlying density modeling

techniques, and help propagate semantic concepts provided

at the coarse granularity of video key-frames to finer grained

regions. Our experiments on the NIST TRECVID common

annotation corpus reveal improvement in annotation propaga-

tion accuracy between 3% to a dramatic 161%.

Index Terms— Algorithm, Information retrieval, Multi-

ple Instance Learning, Video annotation.

1. INTRODUCTION

Semantic video indexing and search is a topic that is of great

interest to the computer vision community and also a subject

of evaluation benchmarks such as the NIST TRECVID bench-

mark [1]. As part of the TRECVID [1] benchmark, annota-

tors across research organizations voluntarily annotated large

broadcast news video corpora in 2003 and 2005. The idea

was to create this common annotation to enable the modeling

of a large number of semantic concepts (such as Face, People,

Sky, Road, Vehicle, Indoors, Outdoors, etc.) that can then be

used for enabling semantic visual search. In the 2003 com-

mon annotation exercise, researchers annotated both frame-

level (Outdoors, Indoors, etc.) and regional concepts (Sky,
Face etc.). For regional concepts, annotators also placed a

rectangular bounding box around the region of interest. How-

ever in 2005, the common annotation task was only confined
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to providing frame-level annotations for both frame-level as

well as region-level concepts. The main reason for this par-

tial and incomplete annotation was the tremendous amount

of time and effort it took to draw bounding boxes and anno-

tate regional concepts. This large scale annotation and the

decision to avoid placing bounding boxes underlines the key

problem we attempt to solve in this paper.

Video annotation is an expensive task and region-level an-

notation makes it prohibitively expensive as seen from the

largest voluntary annotation effort in TRECVID [1]. How-

ever the quality of detection based on regional ground truth is

clearly superior to the quality that can be obtained by conven-

tional learning techniques over keyframe-based ground truth.

In the TRECVID 2003 annotation, annotators marked regions

of interest corresponding to regional concepts with rectangu-

lar bounding boxes. Most the supervised learning algorithms

can then be applied to this cleaner annotation of the concepts

to the regions. This manual bounding box based annotation

was time consuming and negatively impacted overall annota-

tion quality. So while bounding boxes provided cleaner an-

notation where they were marked up, annotation fatigue took

its toll on annotators who ended up missing a large number of

concepts all together from keyframes that contained them and

thus performed terribly on recall. This ended up hurting the

performance of the TRECVID benchmark in 2003 and thus

in 2005 the annotation was confined only to keyframe-level.

This led to a significant improvement in annotation precision

and recall.

In this paper we extend a successful generalized multi-

ple instance learning algorithm [2] to get better region level

ground truth through iterative distillation and cross-granular

propagation of video annotations. This allows annotators to

provide keyframe based annotations only at the global level

and lets the algorithm deal with propagating it to the appropri-

ate region within each keyframe. Using the TRECVID 2003

common annotation corpus, we conduct several experiments

for a number of semantic concepts annotated. We then eval-

uate our approach using annotations that are available at both

the keyframe level and the region level. Different from work

in [2], the framework in this paper focuses more on the re-

fining of ground truth and also includes smart selection and
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Fig. 1. A conceptual illustration of multiple instance learning

at work. Bags are coarse level containers of instances that

are targetted. The target feature space to be learnt is the blob

in the middle close to as many positive bags and far from as

many negative bags as possible.

iterative distillation as new strategy. It also uses different eval-

uation metric fit for the refining procedure.

2. RELATED WORK

Low quality training data substantially hurts model perfor-

mance. Some general schemes that deal with improving train-

ing data quality and annotation accuracy include [3, 4, 5] etc.

Smola et al [3] handle this situation by adding a regularization

term to penalize certain data. Leo et al [4] average the pre-

diction through bagging. Anelia et al [5], build positive and

negative models based on features extracted from the whole

image and then apply a selection procedure based on perfor-

mance to prune the training data by thresholding. However all

these approaches assume a single instance setting where there

is no granular ambiguity and no need to resolve which region

or regions in an image actually correspond to the annotations

that have been provided at the image/frame level.

Work in multiple instance learning on the other hand fo-

cuses on identifying the finer level ground truth through the

coarse level ground truth. In multiple instance learning, the

labels are tagged to a bag of instances. The bags thus pro-

vide the coarse grain containers of the instances that are the

fine grained objects to which these annotations actually corre-

spond. Bags are marked positive if any instance is a positive

instantiation of the concept of interest. Bags are marked neg-

ative if no instance is positive. Figure 1 illustrates this using

bags and instances embedded in a fictional 2 dimensional fea-

ture space.

Multiple instance learning has been applied to image retrieval[6,

7]. We have previously shown a generalized multiple instance

learning algorithm [2] to be more effective than diverse den-

sity [7]. In this paper, we will further extend the algorithm in

[2] to be used for refining the region-level annotations.

3. A GENERALIZED MULTIPLE INSTANCE
LEARNING ALGORITHM FOR DISTILLATION OF

TRAINING DATA

As discussed from previous section that multiple instance learn-

ing(MIL) provides a natural modeling of the problem of prop-

agating the image/frame level ground truth to regional level

ground truth. We now describe the proposed algorithm for

iterative distillation and cross-granularity propagation of an-

notations based on MIL. Our generalized algorithm can work

with any underlying regression or density modeling technique.

It is based on the following observations:

• All instances in negatively annotated bags are negative:

This is definitive information that can be used unlike

the positive bags where there is ambiguity.

• Smart selection of positive instances from positive bags:

Since we know that there is at least one positive in-

stance in the positive bag, we want to maximally use

this information.

• Top K Selection: Not all potentially positive instances

are created equal. After the potential positive instances

are selected from each bag, we only choose some of

them as most reliable instances to improve the precision

of the intrinsic model

• Iterative distillation: Once an intrinsic model is built

to represent the positive instances it can be iteratively

refined until saturation.

The algorithm works as follows:

• Initialization: We start by building an initial negative

hypothesis model from all instances in negatively anno-

tated bags. We also proceed to build an initial positive

hypothesis model by relaxing the ambiguity constraint

for positive bags and using all instances in the positive

bags to build the initial positive hypothesis model. A

likelihood ratio test of the two hypotheses models is

then used to rank each instance in a positively anno-

tated bag.

• Selection of Likely Positive Instances: We know that

not all instances from positively labeled bags are pos-

itive. Most of them are negative instances. There are

choices to select the most likely positive instances from

each bag. One of the method is to define a threshold for

the likelihood ratio and treat the instances with confi-

dence lower than the threshold as noisy data [5]. In our

proposed method, we use the top K selection based on

three steps:
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1. Rank all instances from positive bags based on

their likelihood ratio score.

2. Pick out instances from the step 1 in descending

order of ranking till the point is reached where

at least 1 instance from every positive bag is re-

tained.

3. Top K Selection: From the above retained list of

step 2 of positive instances choose the top k% of

the instances.

Step 1 corresponds to our knowledge about multiple in-

stance learning that at least one of the instances in the

positive bag belonging to positive instances yet there

might be several. Step 2 actually uses the minimal of

maximum confidence of instances among all the posi-

tive bags to be threshold. In addition to ensuring that

each bag is represented in the top K selection proce-

dure, this step also allows the system to automatically

determine this threshold. Step 3 is where only part of

the list created in step 2 is selected for refining the

positive hypothesis model. The intuition is to create

a cleaner training set and thus create a highly precise

ground truth to refine the positive hypothesis model.

We experimentally verify this and will show later that

the determination of value of k% is concept dependent

and has strong correlation with the prior probability of

the concept.

• Distillation/Refinement of the Positive Hypothesis Model:

Having selected the most likely positive instances across

bags, we then proceed to refine the model of the posi-

tive hypothesis. The negative hypothesis is unchanged

from its estimate during the initialization step.

We then iterate the selection and refinement steps until con-

vergence or a fixed number of iterations.

Once terminated the algorithm also provides as output the

most likely positive instance(s) from each bag. As in [2], this

algorithm allows to integrate different supervised or unsuper-

vised method to build the positive and negative models as long

as they can produce a ranking list of instances based on the

confidence values.

Typically for most semantic concepts, the number of neg-

ative bags is much larger than that of the positive bags. Thus

the computationally intense part is the estimation of the neg-

ative model and in comparison, the multiple iterations of re-

finement of the positive hypothesis model do not pose much

of a computational burden.

One more thing to emphasize is that we only use the frame

level annotation to build our models. This is frame level an-

notated concepts are propagated to the regions based on our

algorithm. After this, we use the region level ground truth to

evaluate the performance.

4. EXPERIMENTS

Our experiments are based on the NIST TRECVID 2003 cor-

pus. 28054 annotated keyframes become the bags in our ex-

periments. Each keyframe is segmented into 1-5 regions based

on the manually created bounding boxes. Each of the keyframe

is annotated with several concepts. To build the models in our

algorithm, we will only use keyframe level ground truth for

all the modeling. After we pick out the regions for a concept,

we use the region level ground truth to evaluate the accuracy.

For each of the regions of interest bounded by a rectangu-

lar bounding box, a 166 dimensional HSV color-correlogram

feature vector is extracted to represent the region. We use the

following five semantic concepts from the TRECVID com-

mon annotation corpus for our experiments: Road, Sky, Face,
Building, Person

We use the improvement in accuracy of region-level an-

notation propagation as our metric. For a concept i at iteration

j, let di
j represent the number of instances for which the pre-

dicted annotation matches the ground truth and let gi denote

the number of true positive instances in the ground truth. The

propagation accuracy is the defined as follows:

acci
j =

di
j

gi
(1)

The accuracy gain for concept i in iteration j is defined as

the relative improvement over the baseline which is iteration

1, and is characterized by usage of all instances in positive

bags for building the positive hypothesis model and all in-

stances in negative bags used for building the negative hy-

pothesis model:

accuracy gaini
j =

acci
j − acci

1

acci
1

(2)

The average accuracy gain across all concepts at the jth

iteration over a group of concepts is defined as:

avg gainj =
1
n

∑

i∈conceptlist

accuracy gaini
j (3)

where n is the number of concepts for testing.

Our results show that for all concepts except Face, there

is significant improvement in accuracy gain and the average

accuracy gain after the 4th iteration is more than 60 % ex-

cluding Face. To see the whole picture more specifically, we

plot the performance of one concept Person in Figures 2. The

baseline is generated based on usage of all instances in pos-

itive bags for the positive hypothesis model and instances in

the negative bags with certain down-sampling for the negative

hypothesis model, which is equivalent to select 100% of the

positive instances.

To further investigate the reason for the performance im-

provement, we list the best performance in terms of accuracy
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Fig. 2. Improvement of accuracy of cross-granular annotation

propagation to regions for the concept Person for different top

K selection percentages for 4 iterations of generalized multi-

ple instance learning

Road Building Sky Person Face

prior (%) 2.56 4.54 4.75 23.5 53.4

top K % 10 10 10 30 60
iterations 4 3 3 4 1

accuracy(%) 27.4 17.8 63.6 16.7 90.1

acc gain(%) 94 47.6 32.2 161 2.81

Table 1. Best Accuracy with Respect across number of itera-

tions and top K selection percentages for different concepts

and accuracy gain across multiple iterations and multiple top

K selection percentages juxtaposing it against the prior prob-

ability (expressed in terms of percentage of occurrence in the

collection) of the concept in Table 1.

A concept like Face which occurs in more than 50 % of

keyframes, and already has a very good propagation accuracy

of 88% with even the baseline system cannot be expected to

improve significantly beyond the 88% mark. Further with so

many positive instances from so many positive bags, it is also

difficult to expect that a small top K selection percentage will

work for Face and that any new information will be added

in this iterative distillation given the highly accurate starting

point. As expected the optimal K for Face is 60 % and there

is not much improvement beyond the first iteration.

On the contrary, for the rest of the concepts the exact op-

posite holds true. Three to four iterations are required to im-

prove performance for the rest of the concepts. As for the

top K selection percentage that seems to be strongly related

to the prior probability of the concept. Thus for the relatively

infrequent concepts Road, Building Person, and Sky, dramatic

improvements in accuracy gain occur when the K is small and

iteration is 3 or 4.

From the table, we see that, the proportion of data taken

from the instances should increase as the prior probability in-

creases. Another observation is that as the prior increases,

the number of iterations required to achieve best performance

usually decreases.

5. CONCLUSION

In this paper, we propose a generalized multiple instance learn-

ing framework to refine the training data. Our algorithm is

based on three core concepts: likelihood ratio based ranking

of candidate positive instances; smart selection of a limited

number of candidate positive instances for refinement of pos-

itive hypothesis; and iterative refinement of the positive hy-

pothesis model until convergence. We then apply the iterated

positive hypothesis model and negative hypothesis model to

propagate the keyframe level annotation to the most likely re-

gional candidates from all the positively annotated keyframes.

Using the TRECVID 2003 common annotation corpus that

has region-level annotation ground truth, We show improve-

ment in accuracy gain for all concepts tested with substantial

gains for those concepts that start with low accuracy with the

baseline system and exhibit infrequent probability of occur-

rence. We also verify empirically that the choice of best pa-

rameters is strongly related to prior probability of the concept.
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