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ABSTRACT 
 
Visual information contained in a scene is very complex and 
can be represented with multiple features describing aspects 
of the entire information. In this paper we propose a 
boosting approach to automatic image annotation by 
building strong classifiers based on multiple collections of 
weak concept classifiers with each collection focused on a 
single visual feature. The weak classifiers are trained with a 
maximal figure-of-merit learning approach. By exploiting 
multiple features the boosting procedure allows to build 
classifiers able to pick the most discriminative feature for 
the specific annotation task. 
 

Index Terms— Image Annotation, Text Categorization, 
Multi-Topic, Maximal Figure of Merit, Boosting
 

1.  INTRODUCTION 
 
Automatic Image Annotation (AIA) aims at associating 
image content with a set of pre-defined textual labels, also 
known as concepts or keywords. Many techniques have 
been proposed to characterize the joint distribution between 
the keywords and the visual content being represented in 
term of symbolic elements, known as visual terms. By doing 
so each image can be converted into a document vector in a 
similar way to what is done in a vector based representation 
of text documents in information retrieval [15]. Image 
classification can now be cast as a multi-topic text 
categorization problem [16] in which a set of topics, or class 
labels, are assigned to a test image. Such symbolic 
representation, or tokenization, is used in translation model 
(TM) [1][5], maximum entropy (ME) [11], Markov random 
field (MRF) [4] and conditional random field (CRF) [10]. 

In this study we propose an approach to automatic image 
annotation with boosting of a collection of weak classifiers. 
They are trained with a maximal figure-of-merit (MFoM) 
[8] learning framework designed to maximize any 
performance metric. It has been successfully applied to 
automatic image annotation [8]. 

In previous studies on AIA modeling images are often 
characterized with a single global set of visual terms. In this 
paper each image is represented by multiple sets of visual 
terms, each is generated from a different visual feature. One 
dedicated set of MFoM-trained classifiers can therefore be 
obtained for each particular feature. These MFoM-trained 
classifiers are considered as weak classifiers and a boosting 
procedure is applied to build a global set of strong 
classifiers. Since AIA is cast as a multi-topic classification 
problem the conventional multiclass AdaBoost.M2 [7] 
could be applied directly but for the weaker requirements 
here a set of parallel AdaBoost.M1 is used instead. 

An example of boosting of classifiers based on linear 
discriminant analysis (LDA) has been proposed [14] [17]. In 
[14] a particular form of LDA is applied to the specific task 
of face recognition. Boosting is also shown to improve 
classification performance [17] in the case the target metric 
is fixed. In this paper we propose a boosting framework that 
is applicable to any desirable figure-of-merit. 

The remainder of the paper is organized as follow: 
Section 2 discusses the representation of the image in vector 
spaces characterized by multiple visual terms. Section 3 
describes the application of MFoM to train AIA models. 
Section 4 deals with the boosting process of MFoM-based 
classifiers. Section 5 shows experimental results. Finally we 
summarize our findings in Section 6. 
 

2.  VECTOR-BASED IMAGE REPRESENTATION 
 
Image content is typically very rich and analyzed scenes are 
usually full of clattered elements. Information captured in a 
generic picture has a number of multiple components that 
human visual system is able to catch as significant elements 
in a scene. Different representations are conceivable for a 
multi-purpose characterization of images. A different set of 
features is often selected according to the aspect of 
information that is more relevant to a particular task. 
Starting from the values of the visual features, a symbolic 
representation of images can be accomplished by extracting 
a set of fundamental units, or tokens, for all images. 
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2.1. Feature Symbolic Level 
 
Visual features, such as color, texture and shape, are often 
extracted from an image to describe its content. The 
distribution of the feature vectors is usually not evenly 
distributed, and tends to have different mass concentrations 
in different parts of the vector space. The set of points of 
high concentration, often called visual terms, can be used as 
a basis to represent the generic visual information. 

This approach allows visual terms to emerge from a data 
set and build a generic set of symbols that is limited only by 
the coverage of the images training set. In the same way the 
discriminative power of the visual term for a particular 
feature is related to its characteristic and the correlation with 
the semantic content of images. 

Although k-means algorithms have been widely used in 
AIA to extract a set of tokens [1][5][11][12], in this work 
the extraction of the visual terms has been achieved through 
vector quantization using the LBG algorithm [13]. 
 
2.2. Image representation 
 
Consider a set of visual terms, A={A1,A2,…,AM}, with each 
element describing a specific visual characteristic. An image 
can be represented by a vector, V=(v1,v2,…,vM) where the i-
th component takes into account occurrence count of the 
term Ai in the image. Obviously the complexity of the visual 
information is captured more reliably if more characteristics 
are used. A way to integrate information coming from 
heterogeneous features is to consider a unique composite 
vector and extract a unique visual vocabulary (set of visual 
terms) from it. This solution, although largely used, has 
drawbacks due to the computation cost of extracting a base 
for vector as long as the sum of all the features dimensions, 
and has to repeat the entire process from scratch each time a 
new feature is added to the previous ones.  An interesting 
alternative is the usage of codebooks from different features 
and putting together heterogeneous visual information at the 
symbolic level.  

To improve the representation capability of each visual 
dictionary, each single codebook can be exploited in a more 
extensive manner by representing the visual content in terms 
of both unigrams and spatially displaced bigrams[9]. The 
increased expressivity of the bigrams often outperforms, at 
the cost of an increased dimensionality, the results achieved 
with the mere application of unigrams. Considering a 
codebook for a single feature of M elements, the total 
dimension of the image vector is, in this case, M*M+M. For 
a codebook of 64 elements the total vector dimension is 
4160, and it is increased to 16152 when M=128. To enhance 
the indexing power of each element, a normalized entropy 
of the representation for both the unigrams and bigram, can 
be computed [2] 

3.  AUTOMATIC IMAGE ANNOTATION WITH 
MFoM-TRAINED CLASSIFIERS 

In AIA the training image set is given as a collection of 
pairs formed by a D-dimensional vector of values, 
representing the image, and one or more manually assigned 
keywords or concepts. The predefined keyword set is 
denoted as C={Cj,1 j N}, with N  the total number of 
keywords and Cj the j-th keyword.  

In this study we used LDF-based classifiers to model the 
concept space because it is easy to separate high-dimension 
vector spaces with simple LDF models. MFoM learning can 
be applied to optimizing any desired figure-of-merit. It was 
shown to give good AIA performance [8] when a single 
visual dictionary is considered. 

The classifier is formed by a set of  functions gj(X, j) that 
are equal in number to the cardinality of the keywords set 
and for each of them the set of the parameters j is trained in 
order to discriminate the positive from negative samples. In 
the annotation stage, multiple relevant keywords are 
assigned to an image X, according to the following multiple-
label decision rule, 

Accept jCX if 0);();( XgXg jjj
 

 
Reject jCX , Otherwise 
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where  C¯j   is a subset containing the most competitive 
keyword models against Cj, |C¯j| is its cardinality, ¯ is the 
parameter set for all competitive keyword models, and  is a 
positive constant. Eq. (2)  measures the competing score as 
a geometric average of scores of all competing categories 
and works as a negative model for the j-th keyword. 

If the size of C is large, the cost of verifying all possible 
decisions in Eq. (1) is high. Fortunately, the nature of multi-
category learning makes it possible to compare scores from 
N concept models. In this way a comparison with the top-M 
keyword candidates gives a reliable evaluation for the task.  
 
3.1. MC MFoM Learning 
 
In MC MFoM learning, the parameter set Njj 1,   

is estimated by optimizing a metric-oriented objective 
function which is continuous and differentiable, and is 
specially designed for approximating any performance 
metric, e.g. precision, recall or F1, based on error counts. 

For the classifier, a linear discriminant classifier (named 
LDU or g-unit), apt to discriminate positive from negative 
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samples, is trained for each keyword. The LDF has the 
form: 

jjjj bXWXg ),(  (3) 

where Wj and bj are the parameters for the j-th concept 
model. A direct measure of misclassification is defined in 
terms of the score and anti-discriminant function as: 
 

),(),();( jjj gXgXd   (4) 
If eq. (4) is negative image X is labeled with the j-th label 

while if it is positive competing labels are assessed as more 
adherent to the input. With the above definitions, most 
commonly used metrics (e.g. precision, recall and F1) can 
be defined in terms of dj functions.  

In the following series of experiments an objective 
function considering both false negative and false positive 
errors is considered. Directly derived from the Det curves, a 
det error is defined as: 

Nj

jj

N
FNFP

DetE
1 2

 (5) 

where FPj and FNj are the number of false positive and the 
false negative samples for the j-th label . 
The linear discriminant functions are trained by minimizing 
the Det Error with a generalized probabilistic descent 
algorithm [8].  
 

4. BOOSTING OF MFoM 
 
Starting from a description of the training images in terms 
of different visual features, a multiple description for each 
image is available. Instead of considering a single visual 
dictionary with combined features, a different visual 
dictionary is extracted for each feature with a separate set of 
MFoM classifiers trained to minimize of the Det Error. 

Given a specific visual feature, each g-unit is trained to 
minimize the Det error. The set of all the g-units that are in 
number equal to the number of labels for the number of the 
MFoM classifiers (or visual dictionaries), is then considered 
as the set of the weak classifiers, ht .  

Each g-unit is oriented to the detection of a single label or 
keyword and to make all the g-units comparable, a threshold 
to each output is imposed. Due to the characteristic of the 
classifier, each unit will have better performance when 
detecting its own class and worse performance when images 
of other classed are presented as input.  

To build a system able to detect the presence of different 
labels a strong classifier, built through the boosting 
algorithm[7], is computed for each label. Considering that 
the g-unit values are the same for all the classes, the 
overhead for extending the classifier to all the classes is 
limited to the application of the boosting algorithm for each 
target class. 

The description of the algorithm is referred to the 
boosting for a single label but for all the other labels the 
process can be replicated without a significant modification. 

Given a training set, (x1,y1),…, (xn,yn), where xi is a 
representation of the generic image and yi indicates the 
presence or the absence of the specific label, the distribution 
Dt is computed as shown in the following figure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1, The Ada boost algorithm applied to MFoM 

The boosted classifiers, built by considering the output of 
limiting the g-units with some thresholds, allows us to select 
the most reliable detector for each label and to weight their 
outputs according to their discrimination power for the 
target class. 
 

5. EXPERIMENTAL RESULTS 
 
The proposed approach is tested on the COREL data set 
consisting of 5000 images divided in 50 classes. 4500 
images are used for training while the remaining 500 images 
are used for testing. For analysis purposes each image is 
partitioned into a collection of 16x16 macro-blocks and 
characterized by color, represented in the color spaces as 
RGB, YUV, and Lab, and texture, represented as energy 
distribution of Gabor wavelet (GAB) and fast Fourier 
transform (FFT). For each visual feature a set of 128 visual 
terms are selected and images are represented considering 
both unigrams and spatially displaced bigrams. A set of 
MFoM-trained classifiers are obtained for each feature and 
the values of the trained g-units is considered as input for 
the boosting procedure. 

In Table 1 we show the performance of boosting when 
multiple visual dictionaries are used. The number of stages 

Initialize weights w1,i 
for t=1,…,T 

1. normalize weights wt,i 
2. evaluate the weighted error for each weak 

classifier 

iiji ij yxhw )(  
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for the strong classifier is set to the half of the available 
weak classifiers. It clearly shows performance improvement 
in terms F1 measures and reduction of Det Error when 
multiple visual features are used to characterize images. 

 
 

RGB,  
GAB 

RGB,GAB 
FFT 

RGB,GAB 
FFT,YUV 

RGB,GAB 
FFT,YUV 

LAB 

F1 0.20 0.22 0.27 0.32 

DetE 0.28 0.28 0.26 0.23 

Table 1, Precision, Recall and F1 measure for Boosting 
of MFoM involving different visual dictionaries 

In Figure 2 are depicted the Precision versus Recall 
curves for the same experimental set presented in Table 1. 
The figure shows the increment in precision for equal values 
of recall when multiple features are used to train the MFoM 
classifiers. 

 
Figure 2, Precision vs recall graph when multiple 
features are used 

In Table 2 a comparison with the state-of-art techniques 
in AIA is presented. The values of precision and recall for 
boosting of MFoM are compared with the published results 
of TM [4], CMRM [12], ME [11] and MBRM [6]. It must 
be said that although the table shows better performance for 
the proposed method, a direct comparison is impossible due 
to the fact that different features were used to describe the 
visual content, and different number of annotation labels 
were used in different models. 

 
 

TM CMRM ME MBRM 
Boost 

MFoM 

Prec 0.06 0.10 0.09 0.24 0.22 

Recall 0.04 0.09 0.12 0.25 0.59 

F1 0.05 0.09 0.10 0.24 0.32 

Table 2, Comparison of Precision and Recall with the 
state of art image annotation techniques 
 

6.  CONCLUSION 
 
We propose a boosting approach to enhance multiple sets of 
MFoM-trained classifiers, each is trained with a different 
visual dictionary. The resulted global strong classifier 
allows the exploitation of heterogeneous features 
characterizing input image in a straightforward and modular 
manner. Experimental results show good performance with 
the proposed approach when compared with published 
results from state-of-art AIA models. As future work, the 
comparison with information fusion techniques applied at 
the same input information can corroborate the effectiveness 
of the proposed approach. 
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