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ABSTRACT 

This paper proposes a texture learning method based on 
fractal compression and Iterated Function Systems (IFS). 
This type of Approach allows to extract self-similarities 
between blocks of a given image. The number of similarities 
for each element yields to a score of each blocks. The first 
blocks of this rating are considered as representative and are 
stored in a database in order to establish a learning process. 
Recognition is made by labeling blocks and pixels of the 
test image. The blocks of the new image are matched with 
the ones of the different texture databases. As an 
application, we used our method to recognize bridges and 
buildings on ground images. 

Index Terms— iterated fonction system, fractal 
compression, learning process, representative blocks 
extraction, texture

1. INTRODUCTION 

Image analysis relies on extraction of specific items such as 
grass, road, wood or bridges. The aim of this paper is to 
explore a new way for representative area extraction. A 
particular way is texture analysis, which usually follows one 
of these approaches: structural, statistical [1], model-based 
[2] [3], or transform [4]. Low-level features rarely well 
classify complex concepts. For example, a building contains 
homogenous and geometric areas. Our aim is to take this 
composite aspect into account by extracting the most 
representative blocks of the concepts samples. The means 
we chose is the fractal compression. Fractal theory has been 
widely worked out during the last two decades ([5], [6], [7], 
[8], [9]). The basis of this kind of compression is the search 
for similarities in the image. This type of approach was 
explored in [10] for handwriting analysis. This paper 
proposes to continue in this way and extend the previous 
study to grey scale images and texture learning. 

2. REPRESENTATIVE BLOCKS MATCHING

2.1 Our method principle 

Our aim is to extract representative elements in the image in 
order to build a learning process. We consider redundant 
elements in a signal as representative and so we want to 
establish associations between blocks in order to measure 
redundancies in the image. These associations are to be 
independant from certain criteria such as rotation, symetry, 
scale, contraste and luminosity.  Such properties can be 
found in Iterated Function Systems. 

2.2 Iterated fonction systems principle

Iterated Function Systems (IFS) are a basis of fractal image 
compression. An IFS is a set of contracting functions 

MMTi :  in a metric space M . This contracting 

function can be extended to the set of parts of M  and 
considering the Hausdorff distance. 
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The fix point theorem gives the existence and uniqueness of 
a subset F  of M  so that FFT )( . F  is called the 
attractor of the IFS. An image is rarely self-similar, for this 
reason, we use the principle of Partitioned IFS (PIFS): the 
image is partitioned, then for each element of the partition 
we aim at finding an area of the image which should 
correspond, apart from a contracting transform. In our case 
the partition is a regular grid. Its elements are called ranges.
We have chosen them square. The zones of the image that 
may correspond are called domains.
The decompression step of the image is limited to the 
application of the PIFS. The initial point is an image that 
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has the same dimension as the compressed image but any 
content is convenient (average grey image for example or an 
ordinary image). At each iteration, the image is transformed 
and converges towards the image compressed by the PIFS. 
Many papers have been published in this field during the 
last two decades. Some of them deal more specially with the 
memory size required to encode the compressed image [11]. 
Others study the optimization of correspondence search 
between similar elements in the image ([9] , [12], [13], [14], 
[15], [16]). 

2.2 Iterated fonction system construction 

To ensure contracting property, the magnitude of the scale 
factor between a domain and a range, and the contrast 
parameter must be lesser than one. Finding the contracting 
transform is equivalent to find, for each couple of range R
and domain D , the parameters that best match the 
following expression: 

lciIsosDresisoR .,,
where sDred ,  is the result of scaling D  by a s  factor, 

iIsoBiso ,  is the application of an isometry referred by 
iIso  on image block B . c  and l  are contrast and 
luminance parameters and can be computed by least square 
method. To respect the square shape of the blocks we limit 
the considered isometries to the eight possibilities of 
rotations and symmetries ( 8..1iIso ). In practice, the 
scale factor can be fixed to 

2
1  as explained by Jacquin in 

[6]. We say that domain D  encodes range R  if the 
matching between D  and R , by lcsiIsoRDT ,,,,, ,
is good enough, that is to say they can be considered as 
similar according to some given criterion: PSNR, RMS, etc. 

3. SELECTION PROCESS 

3.1 Domain score definition and optimization 

The compression phase allows knowing which part of the 
image encodes which other one. To define the score of a 
domain, the main idea is to know how many ranges may 
encode the domain, according to some reconstruction error 
threshold S . The reconstruction error of a range R  by a 
domain D  according to a given transform T  is defined by 

RlciIsosDresisodRDEr
lciIsos

,.,,min,
,,,

Where .,.d  is the RMS measure between two blocks. 

Then, we have 
R

SRDErSDscore ,,  where 

otherwise
trueisPif

P 0
1

So we define a score to rate domains. The score of D  is the 
number of ranges R  that verify SRDEr , . We may 
notice that when contrast is low, the matching between 
blocks cannot be considered as representative. As natural 
images are coherent, the domain score map associated with 
the image varies practically in a continuous way. Then we 
can say the pertinence of a domain is not located exclusively 
on this domain location but expands to its neighborhood. 
This phenomenon ensures the robustness of our method, 
regardless of small variations according to the choice of a 
partition of the initial image. 
An exhaustive run of the range/domain couples can be 
computionaly expensive for large image area. A possible 
optimization, or restriction, is to rely on a measure and for a 
given range (resp. domain), only take into account domain 
(resp. ranges) that have a similar measure. Such restriction 
measure could be fractal dimension or entropy like 
proposed in [17]. 
We have just seen how to rate domains. This allows us to 
establish an order relation among the domains and gives us 
a choice criterion, so that the learning process leads to a 
good modeling of the image or texture. 

3.2 Domain sorting and representativness definition 

We want to characterize textures through most 
representative domains. Selecting only domains with the 
highest score is not enough as, from the previous remark, 
two neighboring domains may have similar scores and code 
parts of the same zone of the image. In fact, we want to 
encode the biggest possible area of the image with the 
smallest number of domains. In order to solve this problem, 
we establish an increasing threshold procedure. Then 
domains are selected as follows: 

1. All ranges are marked not encoded
2. We compute the score of each domain according to 

actual S , taking into account only non-encoded 
ranges 

3. The domain with the best score is selected and 
stored. All the ranges it encoded are marked 
encoded.

4. Repeat 2 and 3 until the needed percentage is 
reached. 

In the practical case, matrix (.,.)Er  must be rounded, 
clusterized, in order to have enough couples in competion at 
each step. The smaller the clusters are, the finest the 
reconstruction will be. 

3.3 Inter class discrimination 

In order to achieve the segmentation of an image, several 
textures have to be learnt using the previous method. When 
learning a texture, some domains can be ambiguous as they 
allow encoding parts of other textures. These domains may 
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be prejudicial to the discrimination. To suppress this 
ambiguity, we try to reconstruct a texture (i.e. its ranges) 
with domains coming from other textures. A domain from a 
texture is considered as ambiguous if it allows encoding 
more than a given percentage of ranges of another texture. 
The ambiguous domains are suppressed from the learning 
data base.

4. EXPERIMENTATION

4.1 Diversity and similarity measure 

For each learnt texture, we have a set of representative 
domains we will try to find in the test image. A redundent 
problem when using block matching approaches is the 
importance of taking neighbourhood into account in order to 
suppress false alarms. To include this constraint we suppose 
that one can be more confident in an area reconstructed with 
many different domains of a concept rather than another 
area reconstructed with a very few of them. This parameter 
is called richness of domains. Let ic  be a learned concept 

and p  a pixel on the test image, icprich ,  is the number 

of different domains of ic  used to reconstruct the 
neighborhood of p . The more the richness is high and the 
distance is small, the more we are confident in the labeling 
of the considered area. 

4.2 Distance definition for the recognition task 

The principal originality of this study is the learning 
process. Once the reference block database has been 
computed for each concept, the local recognition task can be 
summarized as a classical search of the nearest element 
between the blocks of the test image and each domain of 
each concept. The local distance is computed by comparing 
normalized block attributes. When using both richness and 
local distance parameter, we must normalize them in order 
to compute a coherent value. Let p  be a particular pixel. 

For each class ic  we know the normalized distance 

icpdist ,  and the normalized richness icprich , . The 
final distance of p  is defined as 

22 ,1,, iiifinal cprichcpdistcpd
And so the label of p  will be: 

ifinali cpdplabel ,minarg

4.3 Learning data and test results 

We have chosen to learn two classes: building and 
vegetation. In the learning image, areas 1 and 2 correspond 
to vegetation, and areas 3 and 4 correspond to buildings.

Fig. 1. Learning data base sample. Areas 1 & 2 contain 
vegetation; areas 3 & 4 contain buildings (private source 

image). 

Fig. 2. Test image (public source image). 

Fig. 3. Ground truth of the test image: white for buildings, 
black for vegetation. 
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Fig. 4. Buildings recognition without (upper) and with 
(lower) richness parameter on the left and right respectively. 

Richness parameter ollow to suppress some false alarms, 
notably on the bottom left and right. Some alarms on the 
bottom right remained. In this configuration, the building 
recognition match better with the ground truth. We notice 
that the small isolated building was not eliminated and is 
still recognized. 

5. CONCLUSION 

We have seen how to use the principle of fractal 
compression to build a learning process for texture concept 
by extracting similar blocks. Then we presented a 
recognition step and finally some test results of our method. 
We highlighted the importance of taking the neighborhood 
of each pixel into account. In particular, this notably 
allowed to remove false alarms and to get our recognition 
nearest to the ground truth thanks to the domain richness 
parameter. One may notice that parameters such as the 
number of reference blocks of each concept can be set to 
match the system’s constraints (especially memory size, 
computing unit speed), for embedded systems and robotic 
use for example. 
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