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ABSTRACT

An interactive algorithm for soft segmentation and matting of natu-
ral images and videos is presented in this paper. The technique fol-
lows and extends [10], where the user first roughly scribbles/labels
different regions of interest, and from them the whole data is au-
tomatically segmented. The segmentation and alpha matte are ob-
tained from the fast, linear complexity, computation of weighted dis-
tances to the user-provided scribbles. These weighted distances as-
sign probabilities to each labeled class for every pixel. The weights
are derived from models of the image regions obtained from the user
provided scribbles via kernel density estimation. The matting results
follow from combining this density and the computed weighted dis-
tances. We present the underlying framework and examples showing
the capability of the algorithm to segment and compute alpha mattes,
in interactive real time, for difficult natural data.

Index Terms— Distance functions, Segmentation, Matting, Nat-
ural, Interactive

1. INTRODUCTION

Interactive image and video segmentation, and matting, where the
user starts the automatic algorithm by providing rough scribbles la-
beling the regions of interests, has received a lot of attention in re-
cent years, see for example [1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14] and
references therein, and [10] for a discussion on these works and the
key attributes of distance-based techniques as the one pursued in this
paper.

In order to address the challenges of real-time interactive image
segmentation, the authors of [10] proposed to exploit the colorization
work in [17], where the goal is to add color (or other special effects)
to a given mono-chromatic image following color hints provided by
the user via scribbles (see also [7]). The added color depends on
the geodesic distance between the scribble and the pixel being pro-
cessed. Being more specific, let s and t be two pixels of the image
Ω and Cs,t a path over the image connecting them. The geodesic
distance between s and t is defined by:

d(s, t) := min
Cs,t

∫ 1

0

Wdp, (1)

where p stands for the Euclidean arc-length and W is a weight that
depends on the application (see below). This distance (1) can be ef-
ficiently computed in linear time [16], making the algorithm appro-
priate for interactive applications. Let now Ωc be the set of pixels
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labeled by the user provided scribbles li, i ∈ [1, Nl], with color in-
dications in [17] or segment labels in [10]. Then, the distance from a
pixel t to a single label li, i ∈ [1, Nl], is di(t) = mins∈Ωc : label(s)=li

d(s, t), and the probability P (t ∈ li) for t to be assigned to the la-
bel li representing the class (color or segment) i is given by Pr(t ∈
li) = di(t)

−1∑
j∈[1,Nl]

dj(t)−1 .

In [17], W = |∇Y · Ċs,t(p)|, where Y is the given luminance
(and the gradient is 2D for images and 3D for video), and this prob-
ability Pr(t ∈ li) weights the amount of color the pixel t receives
from the color in the scribble (label) li.

For segmentation, in order to compute W , [10] starts by model-
ing, via a Gaussian PDF, each region of interest from the collection
of pixels labeled by the user via the scribbles li (one Gaussian PDF
per label li). From this PDF, the likelihood of a pixel to belong to the
same class as label li is derived considering competing PDF’s (com-
peting labels). When multiple colors and channels are used, these
likelihoods are further weighted according to the capability of each
channel to discriminate between the provided labels (these weights
are automatically computed). These likelihoods form the basis for
the computation of W in (1), see below and [10] for complete de-
tails.

In this paper we extend the work in [10] at a number of impor-
tant levels. First, with enhanced models for the scribbled/labeled
pixels provided by the user, we significantly reduced the user effort
and further improve the computational time. Improvements are also
obtained following a two stage application of the above described
segmentation approach (with the enhanced models). Second, we
compute explicit alpha matting (foreground opacity), based on the
geodesic distance combined with a function of the actual pixel value.
This is critical for composition applications. Third, we extend the
work to video. The rest of this paper presents these enhancements
and numerous examples.

2. SEGMENTATION AND MATTING FRAMEWORK

We now present the basic extensions mentioned above.

2.1. Improved Foreground and Background Models

Following the distance based work [10], we first propose a more gen-
eral model for the labeled pixels provided by the user. In [10], the
user specifies scribbles on each “uniform” region, in which the pixel
features (intensities, colors, or filtered responses) are assumed to be
samples from a single Gaussian. Then, as briefly mentioned above,
the algorithm computes the likelihoods and weighted distances for
every pair of competing foreground/background scribbles. This puts
on the user the burden to scribble many regions, virtually one per
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uniform region in the image/video, process which becomes very te-
dious for complicated images. Ideally, we would like the user to
just provide a single scribble for the foreground and a single one for
the background, or in general, a single scribble per region the user
wants to label together. Aiming at this goal, we enhance the Gaus-
sian model via the standard non-parametric kernel density estima-
tion [12]. The user places single scribbles roughly across the fore-
ground (F ) and background (B) and let them automatically prop-
agate throughout the image via the fast weighted distance compu-
tations. In contrast to [10], where the weights W in (1) are linear
combination of likelihoods from a set of channels, we use the gradi-
ent of these likelihoods (in agreement with [17]), which shows better
responses to strong edges.

Specifically, let ΩF be the set of pixels with label F and ΩB

those corresponding to the background. We first estimate the PDF
Pr(x|F ) of ΩF , in Luv color space, via kernel density estimation,1

where x is a color vector. The likelihood PF (x) of a given pixel x
to belong to F according to this PDF computation is then expressed
as

PF (x) =
Pr(x|F )

Pr(x|F ) + Pr(x|B)
, (2)

and PB(x) = 1 − PF (x). We employ the well-developed Fast
Gaussian Transform algorithm to efficiently calculate this probabil-
ity, e.g., [15]. The weighted distance (geodesic) from each of the
two labels for every pixel x is then computed as

dl(x) = min
s∈Ωl

d(s, x), l ∈ {F, B}, (3)

where d(s, x) is the distance defined in (1) with weights W com-
puted as in [10, 17], from (the gradient of) the modified likelihood
described above. From this weighted distance, the probability of as-
signment can be obtained as explained in the Introduction.

2.2. Alpha Matting Computation

As detailed before, this distance can be used for color blending, [17],
or soft segmentation [10]. We now extend this work to obtain an ex-
plicit estimate for the alpha value so that our framework can intrinsi-
cally handle image matting problems. The alpha channel is explicitly
computed as

ωl(x) = dl(x)−r · Pl(x), l ∈ {F, B}, (4)

α(x) =
ωF (x)

ωF (x) + ωB(x)
, (5)

where r is a constant trading between the distances and the probabil-
ities. In our experiments, r is typically between 0 and 2. Intuitively,
pixels that are close to a scribble (in the weighted distance sense),
and have similar colors (in the likelihood sense following the kernel
density estimation), are assigned higher probabilities for the region
represented by that scribble. This alpha matting combines both the
weighted distance and the probability previously estimated, and it
is much more efficiently computed (interactive real time) and with
(at least) competitive results when compared with those works men-
tioned in the introduction.

As a consequence of the improved image modeling via kernel
density estimation and the explicit alpha matting computation, we
significantly reduce the user input and are capable of dealing with
difficult images such as the one in Figure 1. A comparison with

1Kernel density has superior performance and computational times than
models such as mixtures of Gaussians.

[10] is presented in Figure 2. For analysis on the robustness of the
scribble positions, see [17].

(a) (b) (c)

Fig. 1. (a) The user provides foreground (blue) and background
(green) scribbles. The binary segmentation boundary is shown in
a white line. The segmentation is obtained by selecting for every
pixel the corresponding label with minimal distance. (b) The result-
ing alpha mask. (c) Foreground segments composite on blue screen

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Figures (a)-(d) show the user inputs and results from [10].
Figures (e)-(h) correspond to the new inputs and results for the same
images, leading to similar results with less user-marked scribbles.

2.3. Interactive Refinement

The proposed algorithm (as the ones in [10, 17]), allows the users
to interactively add new scribbles to achieve the desired segmenta-
tion in a progressive fashion. By learning from the samples on the
new scribbles being added, the weighted distances get updated and
the new segmentation result is shown to the user. This process is
repeated until the desired segmentation is obtained. Figures 3 and
4 (image from the authors of [11]) illustrate the process of adding
one new foreground scribble F2 to the image. The distance of every
pixel to the foreground labels, as defined previously, is updated to
the smaller value, i.e., dF = min{dF1 , dF2}. The propagation of F2

stops once dF2 exceeds dF1 or dB . When computing the distance to
the new scribble F2, we use the weights, or probabilities/likelihoods,
between only F2 (not F1) and the previous background scribbles,
giving more accurate local color estimation.

2.4. Additional Speedup Strategies

Additional computational improvements can be obtained motivated
by the assumption that an object can have semi-opacities only around
its border and alpha should be solid elsewhere. This holds true for a
large variety of natural images and videos. The main idea then is to
quickly find an approximate boundary and generate a narrow stripe
around it (trimap). Then the refined computation is limited within
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(a) (b)

Fig. 3. The effect of adding a new F scribble. Dotted line shows the
equal-distance line. The F2 scribble only propagates in a limited
area.

(a) (b)

Fig. 4. An example showing how the user adds a new scribble to fix
the misclassified hair region.

this stripe.2

In the first stage, we decompose the Luv color space into three
channels, each of which is quantized into 256 levels. A pixel’s like-
lihood is quickly obtained by multiplying via a look-up table the
three independently estimated probabilities (from the user provided
scribbles as detailed above). A binary segmentation follows, Figure
5(a), which would be less accurate than the full model described be-
fore, but often good enough to get a rough initial segmentation. In
the second stage, a narrow band is spanned by a distance transform
and its borders serve as new foreground and background scribbles
(Figure 5(b)), parameterized by t ∈ [0, 1] (periodic with period 1
if the contour is closed). The band-width depends on the data and
can be interactively adjusted by the user. The likelihoods for pixels
inside the band are then locally recomputed using the feature vector
(L, u, v, t), giving more accurate local estimation. Then we proceed
as before to segment with the weighted distance approach. This two-
step-framework further reduces the user intervention and computa-
tional time yet makes the algorithm more robust and accurate, see
Figure 6 for examples.

Our algorithm preserves the important linear complexity. With-
out any code optimization, it runs for 0.44sec and 3.36sec (exclud-
ing the user operating time) for images with sizes 480 × 452 and
1500 × 1500 respectively, on a 1.7GHz CPU with 512 MB RAM.

3. EXTENSION TO VIDEOS

Our framework can be easily extended to videos, which can be as 3D
images (no explicit optical flow computation, see also [17]). Instead

2If the band large enough such that it ends with zero width around the user
provided scribbles (basically covering the whole image), we are back into
the previously described framework, thereby no obtaining any computational
speedup while remaining fully general.

(a) (b) (c)

Fig. 5. (a) A hard segmentation is quickly found by a few scribbles.
The white line indicates the binary segmentation boundary. (b) Au-
tomatically generated trimap and new scribbles parameterized by t.
(c) Segmented result.

Fig. 6. Five additional examples. For each set, the user places a few
scribbles to obtain different objects of interest (left), computed seg-
mentation and matting (middle), and composition into a new back-
ground (right).
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of cutting out a region, the algorithm segments a spatial-temporal
tube. The user scribbles on one or more frames and then they prop-
agate throughout the whole video (weighted distances in 3D). See
results in figures 7 and 8.

4. CONCLUSIONS AND FUTURE WORK

In this paper we presented a distance-based algorithm for fast in-
teractive natural image and video segmentation and matting. Fol-
lowing the work of [10], we introduced a number of improvements
which greatly simplify user input, reduce computational complex-
ity, and produce pleasant matting results. Various difficult examples
were presented supporting this. We are currently working on further
improving the video results to handle more difficult scenarios with
occlusions and dynamic background.

Fig. 7. Two examples of video segmentation (pair of left and pair
of right columns; first six rows). The user draws scribbles on one
frame of the video and the algorithm automatically segments the
whole video (a total of 50 and 72 frames). The last row shows an
example of video composite.

Fig. 8. Third video example (a total of 66 frames).
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