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ABSTRACT
In this paper we propose a new method for detecting straight
line segments in digital images. It improves upon existing
methods by giving precise results while controlling the num-
ber of false detections and can be applied to any digital image
without parameter setting. The method is a nontrivial exten-
sion of the approach presented by Desolneux et al. in [1]. The
core of the method is an algorithm to cut a binary sequences
into what we call a multisegment: a set of collinear and dis-
joint segments. We shall define a functional that measures
the so called meaningfulness of a multisegment. This func-
tional allows us to validate detections against an a contrario
non-structured model and to select the best ones. The result
is a global interpretation, line by line, of the image in terms
of straight segments which gives back its geometry with high
accuracy. Comparisons with state of the art methods are pre-
sented (more examples are available on-line).

Index Terms— Straight line segment detection, Number
of False Alarms (NFA), Computational Gestalt theory

1. INTRODUCTION

Straight segments give important information about the geo-
metric content of images. These segments can be used as low-
level features to extract information from images or can serve
as a basic tool to analyze and detect more elaborate shapes.
As features, they can help in several problems, such as stereo
analysis [2], crack detection in materials [3], and image com-
pression [4].

Straight segment detection is an old and recurrent prob-
lem in computer vision. Faugeras and his collaborators in-
vestigated digital segments thoroughly and derived interest-
ing applications [5]. To detect segments, they split edge maps
into chains and do polygonal approximations. The most stan-
dard segment detection method uses the Hough Transform [6]
to extract lines and then cuts them off into segments using gap
and length thresholds. In this paper we will call it HTM.

HTM has serious drawbacks. Various thresholds must be
set. When correctly set, they can lead to good results, but
using fixed thresholds can also lead to a significant number of
false positives or false negatives. Moreover, the step that leads

Fig. 1. Up-Left: A digital image. Up-Right: All DMM 1-meaningful seg-
ments. Clearly there are many more printed segments than we can perceive,
but all of them we do perceive are among these detected segments. Bottom-
Left: DMM 1-meaningful segments after exclusion principle. Bottom-Right:
Multisegment detections (the proposed method).

from lines to segments also involves some parameters. Using
fixed values usually leads to misinterpretations. See Fig. 5.

In [1] Desolneux, Moisan and Morel proposed a segment
detection method (DMM) that controls the number of false
positives. The main idea is to count the number of aligned
(gradient direction) points and find the segments as outliers
of a non-structured model. This method is based on a general
principle of perception, that they call Helmholtz principle, ac-
cording to which an observed geometric structure becomes
perceptually meaningful when the expectation of its number
of occurrences is very small in the absence of causal relations
[7]. One wants to rule out detections on non-structured data.
DMM gives a fairly good segment explanation of the scene. It
has demonstrated to give neither false positive nor false neg-
ative. However, we shall see that it very often missed the
right interpretation when aligned segments are present (see
the windows in Fig. 1 bottom-left).

Most segment detection methods have an implicit 1D bi-
nary sequence segmentation step. It turns out that many of
their drawbacks come from this segmentation step. HTM uses

II - 2531-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007



fixed thresholds for gap and length. DMM gives the best ex-
planation in terms of one segment. When collinear segments
are present, this is not necessarily the perceptually best inter-
pretation. We propose to keep the DMM methodology but to
search for a more structured event, the multisegment: a set of
collinear and disjoint segments. As in the DMM approach,
the best multisegment will be the least expected one in the
a contrario model. We shall see that this more sophisticated
event results in a better interpretation of the image in terms of
straight segments (see Fig. 1 bottom right).

The dependence of the results of the proposed method on
its parameters is very weak. In practice we fixed them once
for the hundreds of images we tested.

The method we propose here can also be seen as a unified
variational formulation: To each straight line and each poten-
tial multisegment interpretation, a functional gives a measure
of meaningfulness. This measure allows to validate or not a
detection and at the same time to rank them and select the best
one.

The paper is organized as follows: Section 2 presents the
DMM segment detector. Our algorithm is presented in Sec-
tion 3. Section 4 shows some results.

2. MEANINGFUL SEGMENTS

In [1] Desolneux et al. presented an algorithm for straight
segment detection. The two key points of their approach are
the use of gradient orientation and a new framework to deal
with parameter setting.

The first step of DMM is illustrated in Fig. 2. The gradient
of the input image is computed and only its orientation is kept.
In Fig. 2 this information is codified by dash angles. Given a
segment, one counts the number of aligned points, i.e., points
having the gradient orthogonal to the segment up to a certain
precision θ. All potential straight segments on the image must
be tested, and those that satisfy a threshold criterion based on
their length l and their number of aligned points k are kept as
detections.
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Fig. 2. Left: One segment shown over the level-line orientation field (or-
thogonal to the gradient orientation field). Right: The number of aligned
points up to an angular tolerance θ is counted for each segment. The segment
shown has 4 aligned points among 7.

The detection is posed as a hypothesis testing problem. In
the classic framework, statistical models for the background
and for the objects to be detected are needed. In DMM an
a contrario approach is proposed: Only a statistical model
of non-structured data is used. Any detection in that model

would be casual and cannot be accepted. The objects are de-
tected as outliers of the non-structured model.

A non-structured model for the segment detection data is
one in which all gradient angles are independent and uni-
formly distributed. It can be shown that this is the case for
a Gaussian white noise image. Formally, an image X from
the non-structured model H0 is a random image (defined on
the grid Γ = [1, N ] × [1, M ] ⊂ Z

2) such that: (a) ∀m ∈ Γ,

Angle(∇X(m)) is uniformly distributed over [0, 2π]; (b) The
family {Angle(∇X(m))}m∈Γ is composed of independent
random variables.

There are as many tests Ts as there are potential segments
s in the image. On a N×N image, there are N4 potential ori-
ented segments, starting and ending on a point of the grid Γ.
Each test relies on the statistics k(s, x) which is the number
of aligned points in segment s and image x. The detection is
as follows: Reject H0 if k(s, x) � ks, accept H0 otherwise.
For this test, non-H0 is also denoted Hs. Desolneux et al.
proposed to set ks in order to control the number of false de-
tections. False detections are those that arise by chance on the
non-structured model H0.

They define the Number of False Alarms of a segment
s ∈ S and an image x, as

NFA(s, x) = #S · PH0
[k(s,X) � k(s, x)],

where X is a random image on H0 and #S is the number of
potential segments in the image. When there is no ambiguity
about the image x, we will use the notation k(s) and NFA(s).
NFA(s) is #S times the p-value of the test k(s).

The smaller the NFA(s) the more meaningful s is, i.e.,
the less likely it is to appear in an image drawn from the H0

model. Desolneux et al. proposed to reject H0 if and only
if NFA(s) � ε. We get what they call ε-meaningful seg-
ments. Call NFA(ε) = EH0

∑
s∈S

1NFA(s,X)�ε, i.e., the ex-
pected number of ε-meaningful segments detected under the
H0 hypothesis. Note that NFA(ε) is not the same as NFA(s).
NFA(ε) is not attached to any segment, but to the method it-
self. It can be proved [7] that NFA(ε) � ε. This way the
average number of false detections is controlled by ε.

The dependence of the method on ε is very weak. Actu-
ally ks is translated of

√
log ε whenever ε �= 1. In practice

we fix ε = 1 once for all. This corresponds to accepting on
average one false detection per image on the non-structured
model.

Computations can be done explicitly. If the angle toler-
ance θ is set to the value θ = 2πp, the probability that a given
point has the gradient aligned with a segment is p. As the gra-
dient is independent at different image points, k(s) follows a
binomial law of parameters l(s) and p. On an N × N image,
one has: NFA(s) = N4 · B

(
l(s), k(s), p

)
, where B(l, k, p)

stands for the binomial tail, that is, the probability for a bino-
mial of parameters l and p to be larger than k.

Fig. 1 upper-right shows the 1-meaningful segments found
on the image. All the segments that we perceive are among
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them. But there are many more. Whenever a segment has a
central part with many p-aligned points, it is systematically
detected as meaningful because its aligned central part still
makes it very unlikely to appear by chance. A similar ar-
gument explains why redundant parallel and slightly slanted
detections occur near a good one.

To get rid of these redundant detections an exclusion prin-
ciple was proposed [7]. The value of the NFA is used as a
measure of quality to select the best segments. The segment
with the lowest NFA takes its aligned points and a neighbor-
hood of them and prevents other segments from using them.
Then the NFA is recomputed for all remaining segments and
the procedure is repeated until there are no more meaningful
segments. Fig. 1 bottom-left shows the results.

3. MULTISEGMENTS

In Fig. 1 one can see the inaccuracy of segment extremities
detected by DMM. The horizontal lines of the windows are
detected as a long segment instead of three smaller ones. This
problem arises from the way the exclusion principle was used
to select the segments. Fig. 3 shows a numerical example of
the problem.

Segment C,  30 pixels,  20 aligned points,  NFA(C)=9E−7

10 pixels, all aligned points
Segment A

NFA(C)=6E−2
10 pixels, all aligned points
Segment B

NFA(C)=6E−2

Fig. 3. The problem of selecting segments by exclusion principle. Seg-
ments A and B have 10 aligned points, each. In an 512 by 512 image and
p = 1

16
its NFA is 6 · 10−2. Segment C includes segments A and B and a

gap of 10 non-aligned points. Its NFA is 9 ·10−7. Segment C has the lowest
NFA and will be selected by the exclusion principle applied to segments.

In [8] Delon et al. addressed a similar problem for his-
togram modes detection and explained why big modes can
occlude small ones when using a similar detection principle.
In [9] Cao et al. tackled this issue and showed that the proper
way to decide whether or not a cluster C should be split-
ted into two disjoint sub-clusters C1 and C2 is not only to
compare the meaningfulness (measured in terms of NFA) of
C1 (resp. C2) against the meaningfulness of C but also to
look at the meaningfulness of the group formed by C1 and
C2 against the meaningfulness of C. Our work is inspired by
their method.

The general idea is to use a more global criterion to select
straight segments. Instead of the one-to-one straight segment
comparison used in [1] we propose comparing different inter-
pretations for a whole line in terms of sets of segments. This
sequence of non-overlapping segments on a line is what we
call a multisegment. The NFA of a multisegment still has to
be defined.

Given a line L, an n-multisegment with support in L is an

n-tuple (s1, . . . , sn) of n disjoint segments si contained in L.
The set of all n-multisegments with support in L is M(n,L).
Given an image x and an n-multisegment (s1, . . . , sn), we
define the vector k(s1, . . . , sn, x) ∈ N

n such that each com-
ponent is the number of p-aligned pixels in the correspond-
ing segment. Usually k(s1, . . . , sn, x) is simply denoted by
k(s1, . . . , sn) when there is no ambiguity about the image x.
Formally, k(s1, . . . , sn) = (k(s1), . . . , k(sn)).

An expression for the multisegment NFA(s1, . . . , sn) can
be found by the same steps as in the single segment case. The
a contrario framework still holds: H0 is chosen the same way
as before, induced by Gaussian white noise images.

In the case of a single segment s, the test had the form
B
(
l(s), k(s), p

)
� α with α equal to ε

#S
. The segments of

a multisegment are not overlapping, which guarantees inde-
pendent random variables k(si). The test associated with a
multisegment has the form

∏n

i=1 B
(
l(si), k(si), p

)
� α.

Definition 1. For an n-multisegment (s1, . . . , sn) inM(n, L)
(L is the support line) and an image x, itsNFA(s1, . . . , sn, x)
is defined as

#L
(

l(L)

2n

)
B(l(s1), k(s1), p)

n∏
i=2

(l(si)+1)B(l(si), k(si), p)

where #L stands for the total number of lines in x, and l(L)
is the length of L. NFA(s1, . . . , sn, x) will be abbreviated by
NFA(s1, . . . , sn) when there is no ambiguity about x.

We call ε-meaningful multisegment a multisegment such
that NFA(s1, . . . , sn) < ε. The following proposition shows
that the previous definition is consistent with the theory.

Proposition 1. For all n > 0,

NFA(ε)
def
= EH0

[num. of ε-meaningful n-multisegments] � ε

We can use this new NFA to analyze the numerical exam-
ple in Fig. 3. The value of#L is about 2(M+N)2+4MN in
a N ×M image. There are 4 interesting multisegments to ex-
plain Fig. 3: just segment A, just segment B, just segment C,
and the 2-multisegment formed by A and B, denoted (A,B).
The multisegment NFA values are NFA(A) = NFA(B) =
1.3·10−3,NFA(C) = 2·10−8 andNFA(A,B) = 6.5·10−12.
This last configuration gives the best global interpretation.

The core of the algorithm just takes a binary sequence
of points (aligned/not-aligned) in one line and gives the best
interpretation in terms of multisegments.

A priori all potential multisegments on the sequence have
to be tested to select the best interpretation. The number is
huge. It can be reduced by considering the runs (see Fig.4(a)
for the notion of run) of all aligned points of the sequence. It
can be shown that only the multisegments with segments that
start and end with a run are interesting. Moreover, a dynamic
programming algorithm can provide the result with complex-
ity O(r3) where r is the number of runs on the line. The de-
tails will be published elsewhere. The whole algorithm tests
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all lines on the image. For each line it keeps the best multiseg-
ment interpretation. Then the exclusion principle is applied to
avoid redundancy.

4. RESULTS

In white noise images, the number of ε-meaningful detections
is controlled, as expected, and is usually much smaller than ε.

Fig. 4 shows the performance on two synthetic binary se-
quences. Note that the multisegment approach gives the cor-
rect interpretation in both cases. The multisegment interpreta-
tion captures the structure when it is present (b), and explains
the data as a noisy line when no structure is present (f). The
two threshold algorithm used in HTM, (c) and (g), fails to
give the right interpretation of both situations without param-
eter tuning. The DMM approach, (d) and (h), fails to get the
small segments (d) due to the too local nature of their exclu-
sion principle.

Fig. 4. Segmentation of two binary sequences. (a) A sequence of length
128 with 64 aligned points grouped into 7 runs; and its interpretations with
multisegments (b), HTM (c) and by DMM (d). (e) Binary sequence gener-
ated by randomly drawing 64 out of 128 points with a uniform law over all
possible such subsets, and its interpretation with multisegments (f), HTM
(g) and DMM (h).

Fig. 5(a) shows an image of a building. The segments
found by HTM are shown on (b). For this experiment we used
the HTM implementation of the XHoughtool package (freely
available on the Internet) using the default parameters. One
can see many false positives. Some of them can be corrected
fixing the thresholds. HTM ignores the gradient orientation of
the points; this produces several false detections. The DMM
algorithm gives essentially good detections (c). Some seg-
ments on the image are accidentally aligned. On those cases,
DMM found a large segment instead of the smaller aligned
ones. The multisegments result is shown on (d). This ap-
proach obtains the structure of aligned segments.

More experiments can be found online at http://www.

cmla.ens-cachan.fr/Utilisateurs/grompone/multi.htm.
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(a) (b)

(c) (d)

Fig. 5. A comparison of the segments detected using HTM, DMM and
multisegments. (a): Image of a building. (b): Segments found by HTM.
One can see many false positives. (c): Segments found by DMM. Note that
some segments that are accidentally aligned on the image, are found as a large
segment. (d): Segments found by the multisegment algorithm (the proposed
method).
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