MULTISEGMENT DETECTION
Rafael Grompone von Gioi, Jérémie Jakubowicz
CMLA, ENS Cachan, France
{grompone, jakubowi}@cmla.ens-cachan.fr

Gregory Randall
IIE, Universidad de la República, Uruguay
randall@fing.edu.uy

ABSTRACT
In this paper we propose a new method for detecting straight line segments in digital images. It improves upon existing methods by giving precise results while controlling the number of false detections and can be applied to any digital image without parameter setting. The method is a nontrivial extension of the approach presented by Desolneux et al. in [1]. The core of the method is an algorithm to cut a binary sequences into what we call a multisegment: a set of collinear and disjoint segments. We shall define a functional that measures the so called meaningfulness of a multisegment. This functional allows us to validate detections against an a contrario non-structured model and to select the best ones. The result is a global interpretation, line by line, of the image in terms of straight segments which gives back its geometry with high accuracy. Comparisons with state of the art methods are presented (more examples are available on-line).

Index Terms— Straight line segment detection, Number of False Alarms (NFA), Computational Gestalt theory

1. INTRODUCTION

Straight segments give important information about the geometric content of images. These segments can be used as low-level features to extract information from images or can serve as a basic tool to analyze and detect more elaborate shapes. As features, they can help in several problems, such as stereo analysis [2], crack detection in materials [3], and image compression [4].

Straight segment detection is an old and recurrent problem in computer vision. Faugeras and his collaborators investigated digital segments thoroughly and derived interesting applications [5]. To detect segments, they split edge maps into chains and do polygonal approximations. The most standard segment detection method uses the Hough Transform [6] to extract lines and then cuts them off into segments using gap and length thresholds. In this paper we will call it HTM.

HTM has serious drawbacks. Various thresholds must be set. When correctly set, they can lead to good results, but using fixed thresholds can also lead to a significant number of false positives or false negatives. Moreover, the step that leads from lines to segments also involves some parameters. Using fixed values usually leads to misinterpretations. See Fig. 5.

In [1] Desolneux, Moisan and Morel proposed a segment detection method (DMM) that controls the number of false positives. The main idea is to count the number of aligned (gradient direction) points and find the segments as outliers of a non-structured model. This method is based on a general principle of perception, that they call Helmholtz principle, according to which an observed geometric structure becomes perceptually meaningful when the expectation of its number of occurrences is very small in the absence of causal relations [7]. One wants to rule out detections on non-structured data. DMM gives a fairly good segment explanation of the scene. It has demonstrated to give neither false positive nor false negative. However, we shall see that it very often missed the right interpretation when aligned segments are present (see the windows in Fig. 1 bottom-left).

Most segment detection methods have an implicit 1D binary sequence segmentation step. It turns out that many of their drawbacks come from this segmentation step. HTM uses
fixed thresholds for gap and length. DMM gives the best explanation in terms of one segment. When collinear segments are present, this is not necessarily the perceptually best interpretation. We propose to keep the DMM methodology but to search for a more structured event, the multisegment: a set of collinear and disjoint segments. As in the DMM approach, the best multisegment will be the least expected one in the a contrario model. We shall see that this more sophisticated event results in a better interpretation of the image in terms of straight segments (see Fig. 1 bottom right).

The dependence of the results of the proposed method on its parameters is very weak. In practice we fixed them once for the hundreds of images we tested.

The method we propose here can also be seen as a unified variational formulation: To each straight line and each potential multisegment interpretation, a functional gives a measure of meaningfulness. This measure allows to validate or not a detection and at the same time to rank them and select the best one.

The paper is organized as follows: Section 2 presents the DMM segment detector. Our algorithm is presented in Section 3. Section 4 shows some results.

2. MEANINGFUL SEGMENTS

In [1] Desolneux et al. presented an algorithm for straight segment detection. The two key points of their approach are the use of gradient orientation and a new framework to deal with parameter setting.

The first step of DMM is illustrated in Fig. 2. The gradient of the input image is computed and only its orientation is kept. In Fig. 2 this information is codified by dash angles. Given a segment, one counts the number of aligned points, i.e., points having the gradient orthogonal to the segment up to a certain precision \(\theta \). All potential straight segments on the image must be tested, and those that satisfy a threshold criterion based on their length \(l \) and their number of aligned points \(k \) are kept as detections.

The detection is posed as a hypothesis testing problem. In the classic framework, statistical models for the background and for the objects to be detected are needed. In DMM an a contrario approach is proposed: Only a statistical model of non-structured data is used. Any detection in that model would be casual and cannot be accepted. The objects are detected as outliers of the non-structured model.

A non-structured model for the segment detection data is one in which all gradient angles are independent and uniformly distributed. It can be shown that this is the case for a Gaussian white noise image. Formally, an image \(X \) from the non-structured model \(H_0 \) is a random image (defined on the grid \(\Gamma = [1, N] \times [1, M] \subset \mathbb{Z}^2 \) such that: (a) \(\forall n \in \Gamma \), \(\text{Angle}(\nabla X(m)) \) is uniformly distributed over \([0, 2\pi]\); (b) The family \(\{\text{Angle}(\nabla X(m))\}_{m\in\Gamma} \) is composed of independent random variables.

There are as many tests \(T_s \) as there are potential segments \(s \) in the image. On a \(N \times N \) image, there are \(N^4 \) potential oriented segments, starting and ending on a point of the grid \(\Gamma \). Each test relies on the statistics \(k_s(x) \) which is the number of aligned points in segment \(s \) and image \(x \). The detection is as follows: Reject \(H_0 \) if \(k_s(x) \geq k_s \), accept \(H_0 \) otherwise. For this test, non-\(H_0 \) is also denoted \(H_1 \). Desolneux et al. proposed to set \(k_s \), in order to control the number of false detections. False detections are those that arise by chance on the non-structured model \(H_0 \).

They define the Number of False Alarms of a segment \(s \in \mathcal{S} \) and an image \(x \), as

\[
\text{NFA}(s,x) = \#\mathcal{S} \cdot P_{H_0}[k(s,X) \geq k(s,x)],
\]

where \(X \) is a random image on \(H_0 \) and \(\#\mathcal{S} \) is the number of potential segments in the image. When there is no ambiguity about the image \(x \), we will use the notation \(k(s) \) and \(\text{NFA}(s) \). \(\text{NFA}(s) \) is \(\#\mathcal{S} \) times the \(p \)-value of the test \(k(s) \).

The smaller the \(\text{NFA}(s) \) the more meaningful \(s \) is, i.e., the less likely it is to appear in an image drawn from the \(H_0 \) model. Desolneux et al. proposed to reject \(H_0 \) if and only if \(\text{NFA}(s) \leq \varepsilon \). We get what they call \(\varepsilon \)-meaningful segments. Call \(\text{NFA}(\varepsilon) = \mathbb{E}_{H_0} \sum_{s \in \mathcal{S}} 1_{\{\text{NFA}(s,X) \leq \varepsilon\}} \), i.e., the expected number of \(\varepsilon \)-meaningful segments detected under the \(H_0 \) hypothesis. Note that \(\text{NFA}(\varepsilon) \) is not the same as \(\text{NFA}(s) \). \(\text{NFA}(\varepsilon) \) is not attached to any segment, but to the method itself. It can be proved [7] that \(\text{NFA}(\varepsilon) \leq \varepsilon \). This way the average number of false detections is controlled by \(\varepsilon \).

The dependence of the method on \(\varepsilon \) is very weak. Actually \(k_s \) is translated of \(\sqrt{\log \varepsilon} \) whenever \(\varepsilon \neq 1 \). In practice we fix \(\varepsilon = 1 \) once for all. This corresponds to accepting on average one false detection per image on the non-structured model.

Computations can be done explicitly. If the angle tolerance \(\theta \) is set to the value \(\theta = 2\pi p \), the probability that a given point has the gradient aligned with a segment is \(p \). As the gradient is independent at different image points, \(k(s) \) follows a binomial law of parameters \(l(s) \) and \(p \). On an \(N \times N \) image, one has: \(\text{NFA}(s) = N^4 \cdot B(l(s),k(s),p) \), where \(B(l,k,p) \) stands for the binomial distribution, that is, the probability for a binomial of parameters \(l \) and \(p \) to be larger than \(k \).

Fig. 1 upper-right shows the 1-meaningful segments found on the image. All the segments that we perceive are among
them. But there are many more. Whenever a segment has a central part with many p-aligned points, it is systematically detected as meaningful because its aligned central part still makes it very unlikely to appear by chance. A similar argument explains why redundant parallel and slightly slanted detections occur near a good one.

To get rid of these redundant detections an exclusion principle was proposed [7]. The value of the NFA is used as a measure of quality to select the best segments. The segment with the lowest NFA takes its aligned points and a neighborhood of them and prevents other segments from using them. Then the NFA is recomputed for all remaining segments and the procedure is repeated until there are no more meaningful segments. Fig. 1 bottom-left shows the results.

3. MULTISEGMENTS

In Fig. 1 one can see the inaccuracy of segment extremities detected by DMM. The horizontal lines of the windows are detected as a long segment instead of three smaller ones. This problem arises from the way the exclusion principle was used to select the segments. Fig. 3 shows a numerical example of the problem.

<table>
<thead>
<tr>
<th>Segment A</th>
<th>Segment B</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 pixels, all aligned points</td>
<td>10 pixels, all aligned points</td>
</tr>
<tr>
<td>NFA(C)=9E-2</td>
<td>NFA(C)=9E-2</td>
</tr>
</tbody>
</table>

Segment C, 30 pixels, 20 aligned points. NFA(C)=9E-7

Fig. 3. The problem of selecting segments by exclusion principle. Segments A and B have 10 aligned points, each. In an 512 by 512 image and $p = \frac{1}{10}$ its NFA is $6 \cdot 10^{-2}$. Segment C includes segments A and B and a gap of 10 non-aligned points. Its NFA is $9 \cdot 10^{-7}$. Segment C has the lowest NFA and will be selected by the exclusion principle applied to segments.

In [8] Delon et al. addressed a similar problem for histogram modes detection and explained why big modes can occlude small ones when using a similar detection principle. In [9] Cao et al. tackled this issue and showed that the proper way to decide whether or not a cluster C should be split into two disjoint sub-clusters C_1 and C_2 is not only to compare the meaningfulness (measured in terms of NFA) of C_1 (resp. C_2) against the meaningfulness of C but also to look at the meaningfulness of the group formed by C_1 and C_2 against the meaningfulness of C. Our work is inspired by their method.

The general idea is to use a more global criterion to select straight segments. Instead of the one-to-one straight segment comparison used in [1] we propose comparing different interpretations for a whole line in terms of sets of segments. This sequence of non-overlapping segments on a line is what we call a multisegment. The NFA of a multisegment still has to be defined.

Given a line L, an n-multisegment with support in L is an n-tuple (s_1, \ldots, s_n) of n disjoint segments s_i contained in L. The set of all n-multisegments with support in L is $\mathcal{M}(n, L)$. Given an image x and an n-multisegment (s_1, \ldots, s_n), we define the vector $k(s_1, \ldots, s_n) = \mathbb{N}^n$ such that each component is the number of p-aligned pixels in the corresponding segment. Usually $k(s_1, \ldots, s_n) = (k(s_1), \ldots, k(s_n))$.

An expression for the multisegment NFA(s_1, \ldots, s_n) can be found by the same steps as in the single segment case. The $a contrario$ framework still holds: H_0 is chosen the same way as before, induced by Gaussian white noise images.

In the case of a single segment s, the test had the form $B(l(s), k(s), p) \leq \alpha$ with α equal to $\frac{\gamma}{2^s}$. The segments of a multisegment are not overlapping, which guarantees independent random variables $k(s_i)$. The test associated with a multisegment has the form $\prod_{i=1}^{n} B(l(s_i), k(s_i), p) \leq \alpha$.

Definition 1. For an n-multisegment (s_1, \ldots, s_n) in $\mathcal{M}(n, L)$ (L is the support line) and an image x, its NFA(s_1, \ldots, s_n, x) is defined as

$$\# \mathcal{L} \left(\frac{l(L)}{2n} \right) B(l(s_1), k(s_1), p) \prod_{i=2}^{n} (l(s_i)+1) B(l(s_i), k(s_i), p)$$

where $\# \mathcal{L}$ stands for the total number of lines in x, and $l(L)$ is the length of L. NFA(s_1, \ldots, s_n, x) will be abbreviated by NFA(s_1, \ldots, s_n) when there is no ambiguity about x.

We call ε-meaningful multisegment a multisegment such that NFA$(s_1, \ldots, s_n) < \varepsilon$. The following proposition shows that the previous definition is consistent with the theory.

Proposition 1. For all $n > 0$, $\text{NFA}(\varepsilon) \overset{\text{def}}{=} \mathbb{E}_{H_0} [\text{num. of } \varepsilon\text{-meaningful } n\text{-multisegments}] \leq \varepsilon$.

We can use this new NFA to analyze the numerical example in Fig. 3. The value of $\# \mathcal{L}$ is about $2(M+N)^2+4MN$ in a $N \times M$ image. There are 4 interesting multisegments to explain Fig. 3: just segment A, just segment B, just segment C, and the 2-multisegment formed by A and B, denoted (A,B). The multisegment NFA values are NFA$(A) = \text{NFA}(B) = 1.3 \cdot 10^{-8}$, NFA$(C) = 2 \cdot 10^{-8}$ and NFA$(A,B) = 6.5 \cdot 10^{-12}$. This last configuration gives the best global interpretation.

The core of the algorithm just takes a binary sequence of points (aligned/not-aligned) in one line and gives the best interpretation in terms of multisegments.

A priori all potential multisegments on the sequence have to be tested to select the best interpretation. The number is huge. It can be reduced by considering the runs (see Fig.4(a) for the notion of run) of all aligned points of the sequence. It can be shown that only the multisegments with segments that start and end with a run are interesting. Moreover, a dynamic programming algorithm can provide the result with complexity $O(r^3)$ where r is the number of runs on the line. The details will be published elsewhere. The whole algorithm tests
all lines on the image. For each line it keeps the best multisegment interpretation. Then the exclusion principle is applied to avoid redundancy.

4. RESULTS

In white noise images, the number of \(\varepsilon \)-meaningful detections is controlled, as expected, and is usually much smaller than \(\varepsilon \).

Fig. 4 shows the performance on two synthetic binary sequences. Note that the multisegment approach gives the correct interpretation in both cases. The multisegment interpretation captures the structure when it is present (b), and explains the data as a noisy line when no structure is present (f). The two threshold algorithm used in HTM, (c) and (g), fails to give the right interpretation of both situations without parameter tuning. The DMM approach, (d) and (h), fails to get the small segments (d) due to the too local nature of their exclusion principle.

\[
\begin{align*}
\text{(a)} & \quad \text{(b)} & \quad \text{(c)} & \quad \text{(d)} \\
\text{(e)} & \quad \text{(f)} & \quad \text{(g)} & \quad \text{(h)}
\end{align*}
\]

Fig. 5(a) shows an image of a building. The segments found by HTM are shown on (b). For this experiment we used the HTM implementation of the XHoughtool package (freely available on the Internet) using the default parameters. One can see many false positives. Some of them can be corrected fixing the thresholds. HTM ignores the gradient orientation of the points; this produces several false detections. The DMM algorithm gives essentially good detections (c). Some segments on the image are accidentally aligned. On those cases, DMM found a large segment instead of the smaller aligned ones. The multisegments result is shown on (d). This approach obtains the structure of aligned segments.

More experiments can be found online at http://www.cmla.ens-cachan.fr/Utilisateurs/grompone/multi.htm.

Acknowledgements: We thank Jean-Michel Morel, Pablo Musé and Enric Meinhardt for valuable conversations and suggestions. This research was supported by grants from ALFA project CVFA II-0366-FA (R.G.v.G. and J.J); and Direction Générale de l’Armement (J.J.).

5. REFERENCES