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ABSTRACT

Edges that are visible in color images may not be detected in

the corresponding grayscale image. This is due to the neigh-

boring objects having different hues but the same intensities.

Hence, a color edge preserving grayscale conversion algo-

rithm is proposed that helps detect color edges using only the

luminance component. The algorithm calculates an approxi-

mation to the first principal component to form a new set of

luminance coefficients instead of using the conventional lu-

minance coefficients. This method can be directly applied to

all existing grayscale edge detectors for color edge detection.

Processing only one channel instead of three channels results

in lower computational complexity compared to other color

edge detectors. Experimental results on test images show sim-

ilar edge detection capabilities to typical color edge detectors

at reduced complexity levels.

Index Terms— Color edge detection, Image edge analy-

sis

1. INTRODUCTION

Edge detection is one of the fundamental tasks in image pro-

cessing and computer vision because of its wide use in several

techniques such as segmentation, object recognition, tracking,

stereo analysis, data hiding, and image coding. The efficacy

of the subsequent techniques is heavily affected by the ac-

curacy of edge detection. Conventionally, grayscale images

have been used to detect the edges in an image. Pursuit of

good edge detection algorithms led to such grayscale edge

detectors as Canny, Cumani, and Compass [1–3]. Edges of

the spatially neighboring objects with different hues but equal

grayscale values cannot be detected using grayscale transfor-

mation since the color cue is lost during grayscale conversion.

To obtain more meaningful edges, there has been an in-

creased interest in color edge detection. Humans can dif-

ferentiate thousands of colors compared to about two dozen

shades of gray; hence, grayscale images do not carry all the

edge information that human visual system (HVS) can detect.

In [4], it is stated that luminance component makes up 90%

of all edge points in a color image but the remaining 10% can

be critical for subsequent techniques that rely on edges in an

image; in some cases the additional information provided by

color is of utmost importance. Multi-dimensional nature of

color makes it more challenging to detect edges in color im-

ages, and often increases the computational complexity three-

fold compared to grayscale edge detection; hence, color edge

detection algorithms accept from the beginning that all of the

efforts are to find the remaining 10% of the edges. Impor-

tance of color edge detection also becomes more apparent in

low contrast images [5].

Color edge detection techniques fall into two main cat-

egories. Techniques in the first group [6–10] calculate gra-

dients in each color component separately, then either fuses

the gradients immediately or detect edges in each component

separately before fusing to detect color edges. Techniques in

the second group [2,3,11–15] treat each pixel as a three-tuple

vector and apply vector processing techniques without decou-

pling color components to obtain the edge map. A compre-

hensive analysis of color edge detectors can be found in [5,

16].

There is no universally accepted ”color edge” definition.

Literature in this field suggest the following three definitions:

(1) an edge exists if there is an edge in the corresponding

grayscale image, (2) an edge exists if at least one of the color

components has an edge, and (3) an edge exists if some norm

(generally L1, L2, or L∞) of the gradient from each color

component exceeds a threshold value.

In this paper, we propose a transformation that preserves

chrominance edges. This transformation effectively reduces

the dimensionality of color space from three to one dimension

for detecting color edges along with the already attainable

edges from grayscale image. The proposed method is based

on principal component method. One advantage of using this

method is that it enables the use of many existing grayscale

edge detection techniques to detect color edges. From one

perspective, the proposed method can be seen as a prepro-

cessing step in grayscale conversion. It finds the weighting

coefficients for each color component; hence, enabling edge

detection to find color edges that may be impossible to find

in standard grayscale images. The proposed method detects
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the color edges as other color edge detectors, but at a reduced

computational complexity.

The organization of the paper is as follows: Section two

gives the necessary mathematical framework of the method,

and explains the proposed method in detail. In Section three,

results of the proposed method are presented along with a dis-

cussion comparing with other methods. Then, the paper is

concluded in Section four with remarks.

2. GRAYSCALE CONVERSION

Before describing the proposed method, this section describes

the necessary mathematical foundations it relies on. First,

principal component method is discussed. Second, approx-

imation to finding principal component vector is presented.

Finally, proposed algorithm making use of these ideas is pre-

sented.

2.1. Principal component Analysis

Principal component analysis (PCA) is typically used for two

purposes: (1) to de-correlate a data set, and (2) to reduce the

dimensionality of the data set. For a color image f of size

M × N , each pixel location [m,n] is represented by a three-

tuple color vector f [m,n] for m = 1, 2, · · · , M and n =
1, 2, · · · , N . Each color component can be represented as fi,

for i = 1, 2, 3. Then, the maximum-likelihood (ML) estimate

of the mean is calculated as

f̄ =
1

M × N

M∑
m=1

N∑
n=1

f [m, n]. (1)

And, the ML covariance matrix estimate is

C =
1

M × N

M∑
m=1

N∑
n=1

(f [m, n] − f̄)(f [m, n] − f̄)T , (2)

where C is a 3× 3 real and symmetric matrix. Then, this ma-

trix is used to solve for eigenvectors v1,v2,v3 correspond-

ing to eigenvalues λ1, λ2, λ3 such that λ1 ≥ λ2 ≥ λ3. De-

correlated color components can be written as

gi[m,n] = vi
T f [m,n], i = 1, 2, 3 (3)

where m = 1, 2, · · · , M and n = 1, 2, · · · , N . As a result

of applying PCA, the data is projected along the directions

where it varies most; the variation of gi is greater than the

variation of gj for i < j.

2.2. Principal component vector computation

There are several numerical methods [17] that can be used to

compute the eigenvalues and eigenvectors of a matrix. First

k components can be used to represent the data for many sta-

tistical purposes as most of the variance is contained in the

first k principal components depending on the eigenvalues. If

most of the variance is contained in the first principal compo-

nent, then k = 1 can be used to represent the data, in which

case, λ1 � λj , for j = 2, 3, is satisfied.

Since solving for only the first principal component serves

our purpose, we can eliminate eigenvalue calculation for all

the components and suffice with an approximate first com-

ponent value calculation method. Starting by an estimate of

principal vector v1, power iteration method can be used to

find a good estimate to the the actual principal component.

The following derivation shows how an approximate first prin-

cipal component is calculated.

Let C be an n × n covariance matrix with eigenvalues

ordered as |λ1| ≥ |λj | ≥ · · · |λn|, with corresponding eigen-

vectors v1,v2, . . . ,vn. Let v(0) be a normalized vector not

orthogonal to v1, where the superscript denotes the iteration

number in parenthesis. Then, v(0) can be written in terms of

the eigenvectors of C as

v(0) = a1v1 + a2v2 + · · · + anvn (4)

for a set of coefficients {ai}, where a1 �= 0. Then, an esti-

mate of the first principal component at the k + 1th iteration

is defined by power method recursion as v(k+1) = Cv(k).

Then, taking advantage of the property that the principal vec-

tors which are transformed by the matrix C will be scaled in

the direction of the corresponding eigenvalue and using in-

duction one can write

v(1) = Cv(0)=λ1

(
a1v1+a2

(
λ2
λ1

)
v2+···+an

(
λn
λ1

)
vn

)

v(2) = Cv(1)=λ2
1

(
a1v1+a2

(
λ2
λ1

)2
v2+···+an

(
λn
λ1

)2
vn

)

... (5)

v(k+1) = Cv(k)=λk+1
1

(
a1v1+a2

(
λ2
λ1

)k+1
v2+···+an

(
λn
λ1

)k+1
vn

)

where k ≥ 0. As k → ∞, v(k) → v1 because of the ordering

of the eigenvalues.

The expression v(k+1) = Cv(k) can be rewritten as

v(k+1) = Ck+1v(0) as well. In this case, an estimate of the

first principal component at the k + 1th iteration is defined in

terms of the matrix C and the initial estimate v(0).

Then, an estimate of the first principal component v(k) at

the kth iteration is expressed as v(k) = Ckv(0), and for k ≥ 0
approaches v1 as k approaches ∞.

Note that, when dealing with eigenvectors normalization

of an eigenvector is done using L2 norm. In this paper, how-

ever, L1 norm is used instead since the components of the

vector are used as weighting coefficients of R,G, and B color

components for grayscale conversion.

An immediate consequence of (5) is that the error de-

creases in the O(|λ2
λ1
|k). Experiment with several images that

are used in image processing literature suggest that k = 3 is

a good choice of tradeoff and gives an error less than 0.001.
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2.3. Proposed Method

When a color image is converted to a grayscale image, gener-

ally v0 = [0.299 0.587 0.114] vector is used for weight-

ing red, green, and blue color components of RGB images,

respectively. These weights correspond to the sensitivity of

human visual system (HVS) to each of the RGB primaries.

Some of the color spaces, i.e., hue-based color spaces, use

v0 = [0.333 0.333 0.333] to calculate the grayscale in-

tensity value. Regardless of the selection, grayscale conver-

sion fails to preserve color edges in certain situations, e.g.

Fig. 1(a). In this case, the grayscale image does not carry the

color edge information at all as shown in Fig. 1(b). Color edge

detectors, on the other hand, can easily detect these edges as

shown in Fig. 1(d).

In using the proposed grayscale images for edge detec-

tion, the purpose is not to generate monochrome images for

visual perception but to generate monochrome images that

carry the color edge information. Hence, different set of co-

efficient could be used if they enable preservation of color

edges. Principal component answers that problem by sup-

plying optimal vector for each image so that the resulting

grayscale image has maximum variation; and, consequently

color edge information is preserved during the grayscale con-

version.

The proposed method obtains the grayscale image using

approximate first principal component as the weights of each

color components. In RGB color space, fi represents each

color component for i = R, G, B. Then, the mean vector

is found using (1) and then the covariance matrix is found

using (2). Approximate principal component is obtained by

v1 = Ckv(0). Hence, the grayscale image can be obtained

using (3) for i = 1.

2.4. Computational Complexity Analysis

Color canny edge detector processes three color components

before forming the color gradient. First, each component

is filtered with gaussian to smooth the image. Then, each

smoothed color component is filtered with the derivative of

gaussian. Separability of the gaussian is employed to reduce

the computational complexity. Smoothing requires 2N×M×
wσ multiplications and 2N×M×(wσ−1) additions for each

color component, where wσ is the length of the smoothing

filter. The length of the smoothing filter is at least 3 and in-

creases as σ increases. For example, w1 = 9, w1.5 = 13 and

w2 = 17. Filtering with the derivative of gaussian requires

N × M × w2
σ multiplications and N × M × (w2

σ − 1) addi-

tions for each color component. Hence, the increased compu-

tational complexity of color canny is 2N ×M × (w2
σ + 2wσ)

multiplications and 2N × M × (w2
σ + 2wσ − 2) additions.

The proposed method requires the calculation of the co-

variance matrix estimate. Since C is symmetric, only six ele-

ments of the matrix need to be calculated. Calculation of (1)

requires 3N×M additions, and the calculation of (2) requires

additional 6N × M multiplications and 6N × M additions.

Taking the kth power of C requires k × 15 multiplications

and k × 10 additions. Hence, the increased computational

complexity of the proposed method is 6N ×M + 15k multi-

plications and 6N × M + 10k additions.

3. RESULTS AND DISCUSSION

Experimental results assessing the edge detection are obtained

for the images Tile, Paper, and Tulips. The first one is a

synthetic image; it is generated such that each patch has the

same intensities but different hues. The others are natural im-

ages. For comparison purposes, color variant of canny oper-

ator, which incorporates the Jacobian matrix that is discussed

in [5], is implemented. Three different edges are obtained:

(1) canny edge detector applied to regular grayscale image,

(2) canny edge detector applied to grayscale image obtained

by the proposed method, and (3) color canny operator applied

to color image.

In all three edge detection, the same values of sigma, σ,

and threshold values are used. Sigma values of 1, 1.5, and 1
are used for Tile, Paper and Tulips images, respectively. The

high and low threshold values of the hysteresis are chosen

automatically such that P (X ≤ th) = 0.7, and tl = 0.4th.

Figs. 1(a)-(f) depicts the original Tile image, its regular

grayscale version, its proposed grayscale version, and the cor-

responding edges obtained from them. For this image, it is

impossible to detect color edges using regular grayscale im-

age as shown in Fig. 1(e). Color canny can detect edges easily

since it employs all three color channels. Using the proposed

conversion algorithm grayscale image shown in Fig. 1(c) is

obtained. Since the principal component is the direction of

the largest variation on the data, this modified grayscale im-

age clearly shows each color patch as distinct regions. For the

edge detection of color and grayscale images in Fig. 1(g)-(i),

σ = 1.5 used for good edge detection. One of the sheet in the

image was not detected for the grayscale image due to close

intensity value with the background. However, it was easily

detected for the modified grayscale image and color image.

The edges in Fig. 1(p)-(r) look similar. But, a close inspection

reveals that edge formation in Fig. 1(p) and Fig. 1(r) are bet-

ter than Fig.1(q), and Fig. 1(r) gives more meaningful edges

than Fig.1(p). The proposed method produces similar results

to color canny edge detector. However, the increased com-

putational complexity of the proposed method is a fraction of

the color canny’s.

4. CONCLUSION

This paper presents a chrominance edge preserving grayscale

conversion method. The proposed method uses the approx-

imate first principal component vector as the grayscale con-

version coefficients. To save computation time and to design

a hardware implementable real-time algorithm, the proposed
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 1. The first column is the original images (Tile, Paper, Tulips.) The second column is the grayscale images. The third

column is the grayscale images obtained by approximate principal component. The corresponding edges are in the fourth, fifth

and sixth columns.

method avoids eigenvector decomposition by making use of

power iteration. The conversion enables the edge detector to

detect some edges of the grayscale image that are not detected

using regular grayscale image. It offers a comparable perfor-

mance with color edge detection without increasing the com-

plexity threefold.
5. REFERENCES

[1] J. Canny, “A computational approach to edge detection,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 8, no. 6, pp. 679–698,
1986.

[2] M. A. Ruzon and C. Tomasi, “Color edge detection with the
compass operator,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 1999, vol. 2, pp. 160–166.

[3] Aldo Cumani, “Efficient contour extraction in color images,”
in ACCV ’98: Proceedings of the Third Asian Conference on
Computer Vision, London, UK, 1998, vol. 1, pp. 582–589,
Springer-Verlag.

[4] C. L. Novak and S. A. Shafer, “Color edge detection,” in Proc.
Of DARPA Image Understanding Workshop, 1987, pp. 35–37.

[5] A. Koschan and M. Abidi, “Detection and classification of
edges in color images,” IEEE Signal Processing Mag., vol.
22, no. 1, pp. 64–73, January 2005.

[6] R. Nevatia, “A color edge detector and its use in scene seg-
mentation,” IEEE Trans. Syst., Man, Cybernetics, vol. 7, no.
11, pp. 820–826, 1977.

[7] G. Robinson, “Color edge detection,” Optical Eng., vol. 16,
no. 5, pp. 479–484, September 1977.

[8] A. Shiozaki, “Edge extraction using entropy operator,”
CVGIP, vol. 36, pp. 1–9, 1986.

[9] J. Fan, W.G. Aref, M.S. Hacid, and A.K. Elmagarmid, “An
improved automatic isotropic color edge detection technique,”
vol. 22, no. 13, pp. 1419–1429, November 2001.

[10] A. Koschan, “A comparative study on color edge detection,” in
Proc. 2nd Asian Conf. Computer Vision-ACCV’95, 1995, vol.
III, pp. 574–578.

[11] R. Machuca and K. Phillips, “Applications of vector fields to
image processing,” vol. 5, no. 3, pp. 316–329, May 1983.

[12] S. Di Zenzo, “A note on the gradient of a multi-image,”
CVGIP, vol. 33, pp. 116–125, 1986.

[13] P.E. Trahanias and A.N. Venetsanopoulos, “Color edge detec-
tion using vector order statistics,” vol. 2, no. 2, pp. 259–264,
April 1993.

[14] P.E. Trahanias and A.N. Venetsanopoulos, “Vector order
statistics operators as color edge detectors,” vol. 26, no. 1,
pp. 135–143, February 1996.

[15] J. Scharcanski and A.N. Venetsanopoulos, “Edge-detection of
color images using directional operators,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 7, no. 2, pp. 397–401, April
1997.

[16] Plataniotis K.N. Venetsanopoulos A.N. Zhu, S.-Y., “Compre-
hensive analysis of edge detection in color image processing,”
Opt. Eng., vol. 38, no. 4, pp. 612–625, April 1999.

[17] Lloyd N. Trefethen and David Bau III, Numerical Linear Alge-
bra, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1997.

II - 264


