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ABSTRACT 
 
Canada is one of the major exporters of wheat in the world. 
The quality of these exports is well known and factors such 
as lack of insect infestation are very important. The use of 
thermal images for subsequent analysis of temperatures 
profiles for grain classification and insect detection is a 
method under investigation. This paper presents an 
approach for automatic image segmentation of the wheat 
kernels based on the combined use of wavelet analysis and 
pulse coupled neural networks. It is shown that using 
wavelets as a preprocessing technique yields a consistent 
accurate segmentation in terms of the iteration number in 
which the network yields reliable edges of the wheat 
kernels. Subsequent analysis of these segmentations can 
determine internal qualities such as infestations. 
 
Index Terms— Static wavelet transform, pulse coupled 
neural network, grain segmentation, thermal images 
 

1. INTRODUCTION AND MOTIVATION 
 
Canada produces around 57Mt of grains every year and 
about 46% of that is exported. Wheat is the major grain in 
Canada and the annual production is about 43% (24.5 Mt) 
of the total grain production. To minimize losses by stored-
product insects, early detection of infestations is required to 
carry out control measures. Knowledge on heating behavior 
and quality changes during drying using different methods 
such as microwave heating are essential to develop 
alternative grain drying systems. Similarly, in grain 
handling facilities, quick, reliable machine vision methods 
using visible and invisible imaging techniques are needed to 
assist grain inspectors in the determination of grain grading 
factors [1,2].  

Thermal imaging is a method in which the invisible 
radiation pattern of an object is converted into a visible 
image. By this method, the surface temperature of any 
object can be mapped at a high resolution in two 
dimensions. The region in the infrared band with 
wavelengths from 3 to 14 μm is called the thermal infrared 
region. This band is useful in imaging applications that use 

heat signatures [3]. This technique has been used for several 
applications such as medical diagnostics, building 
inspection and quality evaluation of food materials. The 
quality evaluation of materials using thermal imaging 
involves two types of approaches: (i) induced state imaging, 
and (ii) steady state imaging. In the first approach, the 
object is heated and cooled by an external heating or 
cooling source, then thermal images of the objects are taken 
and analyzed. In this case, the object will be at a different 
temperature (hot or cold) from the background and therefore 
the image will be very clear and sharp. But in the second 
approach (steady state imaging), thermal images are taken 
without any treatment to the objects. At normal conditions, 
biological materials reach thermal equilibrium with the 
ambient conditions in a short time. Therefore thermal 
images of the biological materials taken at steady state 
usually have poor contrast. In some situations, the edges or 
boundary of the object are not clear. Furthermore, in some 
locations on the objects, the object color (temperature) is 
similar to the background. In this case, it is a challenging 
task to segment the object from the background in order to 
obtain useful features from the object. Regular thresholding 
techniques yielded poor segmentations in the steady state 
thermal images under consideration in this work. Hence the 
objective of this study was to develop an algorithm to 
segment accurately the wheat kernel from the background in 
steady state thermal images using an alternative method. 
After segmentation, the temperature profiles on the surface 
of the grain can be analyzed to determine internal qualities 
such as infestations. 

 
2. IMAGE PREPROCESSING 

 
An un-cooled focal planar array type infrared thermal 
camera (Model: ThermaCAM TM SC500 of FLIR systems, 
Burlington, ON, Canada; spectral range: 7.5 to 13.0 m), 
with 320×240 pixels, was used in this study. A 50 m 
infrared close-up lens was attached to the original lens of 
the camera to obtain magnified thermal images of individual 
wheat kernels. 

An image of a Canada western red spring wheat grain 
at 14% moisture content and its histogram are shown in 
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Figure 1. Note how the temperature sensitivity of the system 
yield images with not a lot of contrast and very specific gray 
level values. The original pixel intensities for this image 
vary from 303.3974 to 302.5749. A linear normalization 
was used in order to have a pixel intensity range from 0 to 
255. 
 

  
Figure 1. Left: Original image. Right: Histogram 
 

Defining a fixed threshold to segment the grain from 
the background for this image is not a feasible task. A 
histogram in this scenario must resemble a bimodal 
distribution with a well defined valley [3] so that a 
histogram-based 
thresholding algorithm can be used [4]. Therefore, a 
preprocessing step based on the use of the Static Wavelet 
Transform (SWT) was initially considered by the authors 
and is explained next. 

The wavelet transform of a signal f(x) is defined as [5]: 
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where is an orthogonal wavelet, s is the scale of the 
wavelet function and  denotes convolution. 

In [5], a different approach was proposed to obtain 
Ws(x). Let us consider the wavelet packet to be composed 
by the wavelet  and the scaling function .  The Discrete 
Wavelet Transform (DWT) algorithm states that the 
approximate form A and the details D from a signal g are 
given by the following relation: 
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where ,  denotes the inner product, gi is the projection of 
g at  the ith level and g0=g. In order to obtain the next level 
representations for the next decomposition level, the dual 
basis functions are expressed at a coarser level as dual 
scaling functions at the finer resolution level as indicated 
by: 
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Here, )(kw  and )(ˆ kw are defined as the impulse 
response of a lowpass and a highpass Quadrature Mirror 
Filter (QMF), respectively. The length of the resulting 
products of the QMF and gs is twice the length of the input 
signal [5]. Therefore, the DWT basic computational step is a 
convolution followed by decimation. The decimation retains 
the even or the odd indexed elements and makes the DWT 
to be a time variant transform. In order to maintain the time 
invariance, the SWT does not perform the downsampling, 
giving as a result a time invariant wavelet analysis packet 
and a preprocessed image of the original size. This is an 
important feature since we would like to have a binary mask 
from the segmentation that can extract the pixels that are 
located within the grain in the original image that has the 
temperature information. 

The stationary wavelet decomposition of the image 
shown in Figure 1 was computed and a blurred image as 
shown in Figure 2 was obtained using the coefficients of 
approximation of level 4 and a Daubechies wavelet. Albeit 
the histogram does not show a clear bimodal distribution 
and thresholding was not effective, segmentation of this 
blurred image was presumed to be an easier task at this 
point as it will be seen in the following sections. 

 

  
Figure 2. Left: Preprocessed image. Right: Histogram. 

 
3. SEGMENTATION USING A PCNN 

 
Segmentation of images using a Pulse Coupled Neural 
Network (PCNN) can be achieved even for cases in which 
images present overlap in the intensity ranges [6] such as 
the ones shown in the histograms of Figures 1 and 2. 
Recently, the use of a PCNN for image segmentation and 
classification of synthetic aperture radar images of sea ice 
has been proposed [7]. These radar images are notorious for 
having histograms that do not show well defined modes as 
discussed in the previous section.  

Usually a PCNN is used as a preprocessing step in 
image processing as implemented in [8] for image 
segmentation purposes. PCNNs can also be used for image 
shadow removal [9], image fusion [10] and PCNNs applied 
to image processing is still an active area of research. This 
paper uses the PCNN processor proposed in [11] which is 
briefly described next.  

The feeding region of the neural element of the PCNN 
can be described as 
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WtYStFtFeGtF Feed )1()1()(             (4) 
 

where GFeed is the feed gain, S is input image, tF is the 
time constant of the likage filter of the feeding region, Y(t) 
is the neuron output at time t, and W is the feeding kernel.  

The linking activity can be described by: 
 

MtYtLtLeGtL Link )1()1()(                (5) 
 

where GLink is the link gain, tL is the time constant of the 
leakage filter of the linking region, and M is the linking 
kernel. 

The internal activity depends on the linking and feeding 
activity. The internal activity of the neuron is defined as: 
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where  is the linking coefficient and defines the amount of 
modulation of the feeding due to the linking activity. 

The dynamic threshold is implemented by: 
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where is the time constant of the leakage filter of the 
threshold and V is the threshold gain. 

The output of the neuron is then finally defined by: 
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4. RESULTS AND DISCUSSION 

 
Figure 3 shows the results obtained using the PCNN with an 
original grain image and a blurred version based on the 
wavelet preprocessing approach presented in Section 2. 
Twenty iterations are shown starting from the top-left image 
indexed by 1. Figure 4 shows the same results for another 
grain image. Note how the borders of the grains obtained 
using the SWT for the 12th iteration are well defined for 
both sets of images. Table I summarizes these findings for 5 
images indicating that using the SWT and the image 
obtained at the 12th iteration can be used for automatic 
segmentation of the grain. Figure 5 shows two more 
examples at this 12th iteration. Final borders are easily 
obtained using morphological operations afterwards. Values 
for the different parameters used in the PCNN are shown in 
Table II. 
 

5. CONCLUSIONS 
 
The authors developed a robust and automatic approach to 
segment wheat grains from thermal images based on the use 
of the static wavelet transform and pulse coupled neural 
networks. Albeit there is considerable overlapping between 
the gray level ranges of the background and the grains, the 

use of the wavelet transform helps the neurons of the 
background and grain pulse together consistently for the 
12th iteration using the parameters presented in Table II. 
Thus, this work suggests that the use of the SWT as a 
preprocessor to the PCNN can yield accurate segmentations 
at one particular iteration eliminating any further post-
processing to define the right image among the different 
ones obtained by the PCNN. 
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Figure 3. Top: Segmentation using PCNN, no 
preprocessing. Bottom: Results using the SWT-PCNN 
segmentation. 
 

Table I 
Image 
index, 

method  

Number of 
iterations 

used 

Iteration number 
for successful 
segmentation 

1, original 20 14 
1, wavelet 20 11,12,13 
2, original 20 14 
2, wavelet 20 12,13,14 
3, original 20 13,14 
3, wavelet 20 11,12,13 
4, original 20 13 
4, wavelet 20 11,12 
5, original 20 12,13 
5, wavelet 20 11,12 

II - 275



1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

 
1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

 
Figure 4. Same as Figure 3 for another grain. 
 

  
 
Figure 5. Two more examples of the final SWT-PCNN 
based segmentation obtained using the image corresponding 
to the 12th iteration. 
 

Table II 
Parameter  Value 

Beta 1 
Feed time -0.1 
Feed gain 0.1 
Link time -0.1 

Threshold alpha 5 
Threshold gain 5 
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