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Abstract 
Image segmentation is conventionally formulated as a pixel-
labeling problem, in which “hard” decisions have to be made to 
partition pixels into regions. As image segmentation is usually 
used as a preprocessing step in many image analysis applications, 
the segmentation errors introduced by the “hard” decisions bring 
difficulties to higher-level image analysis. In this paper, we 
propose a “soft” image segmentation method to model the object 
appearance and spatial layouts in an image with an incremental 
mixture of probabilistic models. The proposed approach extracts 
“soft” regions incrementally using adaptive apertures without 
making any hard decisions. We show that “soft” regions not only 
bring more robustness than conventional “hard” regions but also 
enable a higher-level region-based analysis. 
Index Terms— soft image segmentation, incremental 
mixture of probabilistic models. 

1. INTRODUCTION 
Image segmentation, a preprocessing vision technique for 
region-based image analysis, produces regions or edges that 
can be used for higher-level analysis, e.g., shape extraction, 
object detection, and object recognition. Segmentation is 
usually formulated as a pixel-labeling problem, in which 
hard decisions are made according to some predefined 
criteria to assign each pixel a class label. A drawback of 
this formulation is that hard decisions must be made at the 
beginning of the image analysis. Research shows that 
perfect segmentation for general higher-level analysis tasks 
is not usually possible without having knowledge of the 
target shape or object at the higher-level [4]. Segmentation 
errors, either merging regions of different objects together 
or splitting an object into too many regions, cannot be 
easily corrected by algorithms in higher-level analysis. In 
this paper, we propose a “soft” segmentation method to 
avoid making hard decisions in image segmentation.  
Prewer and Kitchen presented a non-probabilistic soft 
image segmentation method [4]. In their work, a weighted 
linked pyramid is employed to represent the non-unique 
segmentations of an image instead of making one hard 
segmentation. Soft image representation can be achieved 
more smoothly by probabilistic modeling. R. Wilson [3] 
proposed Multi-resolution Gaussian Mixture Models 
(MGMM) on the basis of scale space theory. MGMM use a 
GMMs tree to represent an image in multiple resolutions. 
Leaf models can be considered as a regression of the image, 
which is also a soft representation of the image. However, 
the MGMM method is proposed as an image representation 
algorithm instead of a segmentation algorithm. The 
algorithm focuses on fitting the image properly. Apertures 

are not adaptive to the local areas for better segmentation. 
Recently, many researchers have treated image 
segmentation as a mid-level or high-level image analysis 
process. In these works, an image is modeled as a graph. 
Segmentation is performed by graph cut algorithms, such 
the n-cut algorithm [5] and the spectral rounding algorithm 
[6], to integrate objects’ information into the segmentation. 
Although image segmentation in these works is addressed 
as a higher-level algorithm, necessary low-level 
segmentation processes, such as region extraction, are also 
implicitly employed in the graph cut algorithms.  
To address the soft segmentation problem, we use an 
incremental mixture of probabilistic models (IMPM) to 
model the appearance and spatial layouts of objects in an image 
from coarse apertures to fine apertures. Instead of assigning 
each pixel a class label, the IMPM estimates the 
probabilities of each pixel belonging to models, and 
produces “soft” regions in the form of probabilistic 
distributions. Fig. 1(b) demonstrates the spatial centers and 
variances of some models learned from the image (Fig. 
1(a)) using an unsupervised algorithm. Red ellipses indicate 
the models extracted in a coarse aperture, which correspond 
well to the spatial layout of the objects in the image. 
Yellow ellipses are models in a finer aperture for objects’ 
details. More image details can be incrementally modeled at 
smaller and smaller apertures, which are not displayed in 
the figure. The resulting “soft” regions have comparable 
capabilities to conventional “hard” regions supporting 
region-based image analysis. Fig 1 (c) illustrates the image 
reconstructed by using “soft” regions (models), in which 
each pixel is rendered as the expectation value in the 
IMPM.  

 

(b)  

(a) (b) (c) 

 
(d) 
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Fig. 1 A soft image segmentation using the IMPM method. 
Fig. 1(d) zooms in the red rectangle region in Fig. 1(c).  In 
comparison, Fig. 1(e) shows the hard segmentation result of 

1

23
4

5 

6

7
7 
8 9

II - 2771-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007



the same region using the ML method. The “soft” regions 
retain more information on detail structures of the objects 
than the hard segmentation result. The IMPM algorithm has 
many advantages in a mid-level image analysis.  

2. INCREMENTAL MIXTURE OF 
PROBABILISTIC MODELS 

Intuitively, an IMPM method estimates the layout of the 
objects in an image incrementally with multiple models 
from coarse apertures to fine apertures. As illustrated in 
Fig. 1(b), models 1-6, estimated from the entire image (the 
largest aperture), represent the layout of large objects, such 
as sky, grassland, and trees. The key contribution of the 
IMPM is that more detail structures of the objects can be 
represented by incrementally estimating more and more 
new models within smaller and smaller apertures without 
destroying the structures learned at the coarser levels. 
Therefore, we can transform the “hard” image segmentation 
task into a “soft” coarse-to-fine modeling process.  
Formally, let us define a color image { }xyI v  by a set of 
pixels 

xyv , where each pixel is denoted as a feature vector 

( , , )xyv f x y  with feature vector f (color or texture 
features) and a spatial location. We model the image I using 
a set of ordered models { }, ( , , )i i i i iG G G M C . The 
likelihood of the image I over the mixture models G is 
computed as: 

( | ) ( | , ),
i

i i i
G G

P I G P I M C    (1) 

where  
( | , ) ( | ).

xy i

i i x i
V C

P I M C P v M    (2) 

Each probabilistic model iM  can be a predefined object 
shape or just an unsupervised learned Gaussian model. An 
aperture constraint iC  specifies a subset of pixels in the 
image, from which the model iM  is computed. The 
algorithm of the IMPM method is described in the 
following pseudo code. 
 

Algorithm of the proposed IMPM method 
1. Initialize the aperture set C with the entire image 0C . 

Initialize the model set G with predefined models 

01,..., kG G G  if available.  

2. For each aperture iC  in C, incrementally estimate new 

models iM  and weights i  with the existing model set 
G.  

3. Add new models in to the model set G. 
4. Compute a new set of apertures C using the model set G. 
5. Add newly estimated models from every aperture in C 

into the model set G. 

6. Loop the step 2 to 5, until the size of all new apertures in 
C are smaller than a stop threshold.  

 
 

1.1. Initialize the model set  

Initial IMPM models are learned from the largest aperture 
constrained as the entire image. This learning process can 
be totally unsupervised as in the example in Fig. 1. It can 
also be initialized by predefined or manually specified 
shapes. To combine these two cases together, we assume 
that the model set is initialized by a set of predefined 
models 

01,..., kG G , where 0 0k  if no models are 

predefined. 

1.2. Incremental model estimation 

The estimation of models given an aperture constraint iC  
and the existing model set G can be implemented as a semi-
supervised clustering problem. Our goal is to find k models 

0 01,...,k k kG G  together with the existing models 

01,..., kG G  that maximize the likelihood of the image I:  

0
10 0

1{ ,..., }
max ( | ,..., )

k k k
k kG G

P f G G ,   (3) 

where k is an unknown number. The optimal parameters 
can be estimated using a semi-supervised Expectation-
Maximization (EM) algorithm [1]. The value of k can be 
determined by using the Bayesian Information Criterion. 
However, the EM algorithm, which is a time consuming 
algorithm, must be performed many times. In practice, we 
propose a semi-supervised spatial co-EM algorithm to 
perform EM only once. 
In the semi-supervised spatial co-EM algorithm, the input 
space of pixels 

xyv  is split into two spaces: the feature space 
(f), which can be any color or texture features, and the 
spatial space (x,y). For each model ( , , )i i i iG M C , the 
statistical model iM  is also split into two models '

iM  
corresponding to the feature space and "

iM  corresponding to 
the spatial space: 

' "( | ) ( | ) ( | )i i iP M P M P M .    (4) 
The co-EM process uses the expectation of the feature 
model as hidden data to update spatial model while using 
the expectation of the spatial model to update the feature 
model. Notice that the proposed spatial constraint co-EM 
algorithm does not satisfy the sufficient requirements of 
conventional co-EM algorithms [2]. The spatial space does 
not contain enough information leading to a good clustering 
by itself. In fact, the clusters resulting from the expectation 
of the feature models may exist in separated regions in the 
spatial space. Fortunately, in our case, it is not reasonable 
to force the color space and the spatial space to converge to 
the same clusters. Therefore, we allow the two spaces to 
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have different number of clusters in the co-EM process, and 
employ a split-merge procedure to connect them together. 
The algorithm is implemented as the following: 
E-step: 
1. Compute the temporary feature expectation of each pixel 

in the aperture using the current 
0 ck k  color models 

'
0( 1,..., )i cM i k k ; 

Split: Label the pixels in the aperture as their feature 
expectations. Then find connected components that are 
sufficiently large in the expectation image. The number 
of the resulting regions is 1

0
t
rk k . We ensure that all 

existing models share the same cluster labels between 
the color space and the spatial space. 
Using the region label at each pixel as its current spatial 
expectation, record the map from spatial clusters to 
color clusters 1 1:t t

r cA k k . 
2. Compute the temporary spatial expectation of each pixel 

in the aperture using the current 0
t
rk k  spatial models 

"
0( 1,..., )t

i rM i k k ; 
Merge: convert the temporary spatial expectation of 
each pixel to feature expectations using the map tA .   

 
M-Step: 
1. Update feature models '

0( 1,..., )t
i rM i k k  using the 

feature expectations. 
2. Compute the new spatial models "

0( 1,..., )t
i rM i k k  

using the spatial expectations. 

ck  is optimized by using Bayesian Information Criterion 

(BIC). The weights i  of each model is proportional to 
area size of its aperture.  
 

  

(a) (b) (c) 
Fig. 2 Illustration of estimated models, expectation image and a 
model pdf of a skin cancer image. (a) 2 estimated IMPM models. 
(b) expectation image. (c) pdf of the small red model.  
 
This algorithm can achieve a reasonable estimation in no 
more than 10 iterations. Fig. 2 shows an example of 
estimated models, expectation image and model pdf of a 
skin cancer image. In the image, there are no clear 
boundary between cancer and normal skin. Using the model 
pdf, we can avoid make hard segmentation decisions on the 
boundary of the cancer regions. 
The number of resulting initial models 0k k  is adaptively 
determined by the eventual spatial models. The predefined 
models are treated as a set of “existing” models, which are 

not updated in the algorithm. If no model is predefined, the 
algorithm is completely unsupervised, which still performs 
“soft” segmentation well.  

1.3. Estimating finer apertures 

Finer apertures are adaptively extracted using the existing 
model set G. Given the existing models 1,..., nG G , the 
centers of the new apertures are located around the pixels 
that are close to the boundary of the existing models. The 
candidate pixels of these new aperture centers can be 
extracted using the following model-crossing algorithm.  
We first compute expectation image E, in which each pixel 
of the image I is labeled using the model that gives the 
highest probability: 

1
( ) arg max ( | )

n

xy m xy ii
E v G P v G .   (5) 

The pixels in the expectation image E that cross at least two 
models are extracted as candidate pixels. We then randomly 
sample 5% of the candidate pixels as the centers of the new 
apertures. Each new aperture has a square shape (only the 
aperture of an initial model may have a rectangle shape). If 
the center of a new aperture is located at pixel xyv , the 
length of each side of the aperture is determined by the 
average distance from the pixel xyv  to the centers of 
apertures of all the models it crossed. A threshold can be set 
on the size of newly generated apertures to stop the 
expansion of the model set G if pixel level precision is not 
necessary. 

3. EXTRACTING “SOFT” REGIONS 
The IMPM method enables regions or shapes to be 
extracted in a “soft” way. A resulting “soft” region is a 
probability distribution (a pdf) over the entire image, which 
models the probability of each pixel belonging to the 
region.  
Each IMPM model can be associated with a region. Let us 
denote a region as 

iGR  associated with a model iG . If the 
goal is modeling the image, simply computing the region 
pdf ( | )

ixy GP v R  as the model pdf ( | )xy iP v G  is good 
enough. If the goal is segmentation, the model pdf does not 
provide reasonable probabilities for the pixels that are far 
away from the model. To address this problem, we first 
compute the expectation image E using the model set G. 
Then for each pixel xyv  with ( )xy jE v G , we define its 
probability ( | )

ixy GP v R  as: 

( | ) ( | ) ( | )
i Gixy G R xy j j iP v R P v G P G G ,  (6) 

where the model merging probability ( | )j iP G G  is 
computed as ( | ) 1j iP G G  if j iG G ; Otherwise, let 

jS  

II - 279



denote the set of pixels that are labeled as jG  in the 
expectation image E. The merging probability is defined as: 

1( | ) ( | )
xy j

j i xy i
v Sj

P G G P v G
S

.   (7) 

The normalizer 
GiR  can be obtained by: 

1
( | ) ( | )Gi

xy

R
xy j j i

v f
P v G P G G

.   (8) 

1.4. “Soft” region properties 

“Soft” regions extracted by IMPM can still be manipulated 
as “hard” regions in a probabilistic way, for example region 
rendering, areas, orientations, bounding box and so one. In 
Fig. 1 (c), we render each pixel by the mixture of the mean 
colors of the extracted “soft” regions: 

1

1

( | ) ( )
( )

( | )

i i

i

n

xy G G
i

xy n

xy G
i

P v R RGB R
color v

P v R

,  (9) 

where the mean color of each region ( )
iGRGB R  is 

computed using the region model ( | )
iGP R  and the RGB 

value of every pixel ( )I xy in the image I: 
( | ) ( )

( )
( | )

i
xy

i

i
xy

xy G
v f

G
xy G

v f

P v R I xy
RGB R

P v R
.   (10) 

The area of the region 
iGR  as used in Eq. (10) can be 

calculated using the mean value: 
( ) ( | )

i i
xy

G xy G
v f

area R P v R .    (11) 

Region orientation can be easily defined similarly. Some 
properties, for example the bounding box, can be plotted in 
varying probabilities. We will not go into the details of 
these definitions in this paper.  

 
Fig. 2 IMPM models estimated at large apertures. 

4. EXPERIMENTS 
More experiments were performed on images with different 
shapes and texture. We employ features (f) such as 
grayscale values, color values, or Gabor features. The 
number of feature cluster ck  is optimized by using BIC. 
Fig. 2 shows some the IMPM models estimated at large 
apertures. We can see that the estimated models can 
roughly depict the object layout in the images. 
Fig 3 illustrates the extraction of a “soft” region using the 
IMPM algorithm. We extract the largest “soft” region in the 
yellow rectangle (the dog) and mat the region pdf to a 
different background.  
 

 
(a)                                           (b) 

Fig. 3 A “soft” region extracted using the IMPM method. 
 

5. CONCLUSIONS  
In this paper, we propose a “soft” image segmentation 
method based on a probabilistic approach to avoid making 
hard decisions in the low-level image segmentation process. 
We have presented the IMPM algorithm to incrementally 
estimate the appearances and the layouts of the objects in 
images using adaptive apertures. We have shown that the 
resulting “soft” regions contain comparable capabilities and 
more robustness to conventional “hard” regions in 
supporting higher-level region-based image analysis. We 
can conclude that modeling images using probabilistic 
approaches has very promising benefits in comparison to 
conventional image segmentation. 
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