
OBJECT CODING USING A SHAPE ADAPTIVE WAVELET TRANSFORM 
WITH SCALABLE WDR METHOD 

 
Bindulal T.S.*, M. R. Kaimal+ 

 

*Student member, IEEE, +Member, IEEE 
Department of Computer Science, University of Kerala, India 

 
ABSTRACT 

 
In this paper, a shape adaptive wavelet transform coding scheme 
for arbitrarily shaped visual objects which is also scalable and 
progressive is proposed. The proposed scheme uses the shape 
adaptive wavelet transform (SA-DWT) of extracted objects for 
generating the wavelet coefficients and the wavelet difference 
method (SWDR) for progressive scalable coding and decoding. 
The method is developed for the limited bandwidth network where 
the image quality and data compression are most important. The 
experiments are performed on the MRI medical images, and video 
sequence images. The simulation results show that the proposed 
scheme is slightly better at all bit rates, in PSNR   values compared 
to the other scalable coding schemes like SPIHT etc. Thus, the 
proposed coding scheme gives a convenient and better object 
coding scheme with applications in the multimedia image 
compression and transmission scenario. 
 
Index Terms—object coding, shape adaptive discrete wavelet 
transform, WDR method, scalable image transmission 
 

1. INTRODUCTION 
 
The wavelet transform based traditional coding techniques are 
popular in the field of multimedia image compression and 
transmission.  Now   a days, the image compression algorithms are 
focusing on the region of interest of the images so that cost 
effective and lossless compression can be achieved at the expense 
of unwanted data. It is often useful to reconstruct the region of 
interest (ROI) of an image before the background of the image is 
processed in many applications like web browsing, image database 
and telemedicine [10]. 

The coding of arbitrarily shaped objects supporting the two 
important features viz., namely the rate and resolution scalability is 
popular in the object based scalable coding scenario [3]. The 
image can be considered as a composition of different arbitrarily 
shaped objects and encoding these objects individually rather than 
considering the whole picture as a rectangular matrix of pixels will 
be more efficient in situations mentioned above.  Recently, Li and 
Li [9] proposed an important modification of DWT called shape 
adaptive DWT, (SA-DWT) for enabling the wavelet based coding 
of arbitrarily shaped objects. The main feature of the SA-DWT is 
that the number of pixels in the arbitrarily shaped visual objects is 
identical to the number of coefficients in the transformed wavelet 
domain. Moreover, the spatial correlation and self similarity across 
the subbands are well preserved in the SA-DWT.  

A lot of research work has been reported in the field of shape 
adaptive object coding paradigm like ZTE [1] and SPIHT [2, 3] to 

improve the coding efficiency and for supporting the scalability 
property. Many coding schemes like the wavelet difference 
reduction method (WDR) [4] makes use of the run length coding 
scheme and has been found to be an efficient coding scheme. The 
performance of WDR algorithm has been improved by various 
authors [5, 6]. Adaptively scanned WDR (ASWDR) scheme of 
Walker and Nguan [5] and context-modeling with WDR 
(CMWDR) method of Yuan and Mandal [6] offer substantial 
improvements in performance than the powerful SPIHT method. 
Here, the authors modified the CM-WDR [6] as SWDR [7] to 
support SNR scalability as well as resolution scalability. The 
adaptive scalable WDR method proposed by authors [7] is applied 
along with the shape adaptive wavelet transform method in this 
paper for enabling more efficient shape adaptive object coding.    

Further sections are organized as follows: a brief description 
of the shape adaptive discrete wavelet transform is presented in the 
section 2; the proposed scalable WDR (SWDR) algorithm is 
presented in section 3; the experimental results are discussed in 
section 4; the conclusion and references are given in section 5 and 
section 6 respectively.    
 

2. SHAPE ADAPTIVE DISCRETE WAVELET 
TRANSFORM 

 
Object based coding algorithms are the new approaches in the 
image coding paradigm, in which the data in the object are 
transformed with shape adaptive wavelet transform. The shape 
adaptive wavelet transform is done in accordance with the shape 
information and it is additionally sent to the decoder for perfect 
reconstruction [3]. 

The object coding is useful in the medical images. Generally, 
the useful clinical information in a medical image is in the central 
part of the image which needs to be compressed without any loss. 
The background part does not contain any clinical information and 
consumes unnecessary bit budget and reduces the performance of 
the compression scheme. Not only the medical objects, but the 
visual textures are also coded using object based coding 
algorithms. The background of the visual objects has lower 
attention by the viewer and the object with higher attention has to 
be coded very efficiently as shown in figure 1. 

The shape adaptive wavelets transform progresses through 
each row of the segmented objects [9, 10]. The 1-D transform is 
applied to each row and then each column to obtain the 2-D 
transform. Each row intersects the object and forms one or more 
foreground segments which can be found from the shape 
information. A lifting scheme with symmetrical boundary 
extension is applied on each segment independently.  The low and 
high pass bands of horizontal transform are further processed 
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column by column. Each column intersects the object and forms 
one or more vertical segments. One main feature is that number of 
wavelet coefficients after SA-DWT is exactly same as the number 
of pixels in the object.  

During the coding of arbitrary shape objects, there are many 
isolated segments which require special consideration [9, 10]. 
These segments fall into one of the following cases: 1) even length 
signal at even position 2) even length signal at odd position 3) odd 
signal at even position 4) odd signal at odd position [10]. The 
signal is symmetrically extended around its boundaries before 
starting the wavelet transform. SADWT is evaluated according to 
the length of segment as follows: 

 
1) If the length of the isolated segment N is unity, and if the 

position of the pixel is even, the coefficient is appended to 
the low frequency band, else the position of the pixel is 
odd and the coefficient is appended to the high band. The 
normalization is done by 2 . 

2) If the length of signal N is even, then the isolated segment 
is transformed using the lifting scheme to produce N/2 
high frequency coefficients using even sub sampling 
(2i+1) and (N/2) low frequency coefficients using (2i) sub 
sampling, respectively. 

3) If the length of signal N is odd, then if the isolated 
segment starts at an even position, the isolated segment is 
transformed using the lifting scheme to produce (N/2) high 
frequency coefficients and (N/2)+1 low frequency 
coefficients. This done by odd sub sampling (2i) for low 
frequency coefficients and even sub sampling (2i+1) for 
high frequency coefficients. If the isolated segment starts 
at an odd position, the isolated segment is transformed 
using the lifting scheme to produce (N/2)+1 high 
frequency coefficients and (N/2) low frequency 
coefficients. This done by odd sub sampling (2i) for high 
frequency coefficients and even sub sampling (2i+1) for 
low frequency coefficients. 

 
After the SA-DWT, the mask information is needed for the 

decoder to decode the shaped information. The first level row 
mask is sufficient for generating all column masks and row masks 
in the further processing. The boundary positions of the masks are 
coded in lossless and sent to the decoder for perfect reconstruction.         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. ADAPTIVE SCALABLE WAVELET DIFFERENCE 
REDUCTION METHOD 

 
The SWDR [7] is compared with original SPIHT and its scalable 
version S-SPIHT [3] is used along with the shape adaptive wavelet 
transform. The difficulty in checking zero tree of SPIHT for object 
coding can be avoided in the case of SWDR since an adaptive scan 
path technique is used in the latter method. The region growing 
procedure [8] will increase the coding efficiency so that the 
coefficients in the region of interest are coded at the earliest 
available situation. The generated flexible bit stream will produce 
different resolution images as per requirement. 

The scalability properties are implemented through multiple 
resolution dependent lists [3]. The scalable WDR (SWDR) coding 
scheme uses the data structures RGE (coefficients that are 
collected during the adaptive scanning process in Region Growing 
manner), SNS (Significant Neighbour Sub-array, SPS (Significant 
Parent Sub-array), LIP (List of Insignificant Pixels), LSP (List of 
Significant Pixels), TPS (Temporary Set of Significant 
coefficients) to regroup the wavelet coefficients so as to code 
efficiently and get good compression results [7]. 

The transformed image in wavelet domain is partitioned into 
difference subband groups for implementing the scalability 
property. For each spatial subband group L , the lists are ordered 
as RGEL, SNSL, SPSL, LIPL so that L takes values Lmax, Lmax-1, ---, 
1 where Lmax is the maximum number of spatial resolution level 
supported by the encoder or decoder. During the processing of 
wavelet coefficients wij at pixel location ji, from the subband 
level L , if the coefficients from outside the subband occur, it 
will be included in the next level of list at (L-1) level. Scalable 
WDR bit stream can be reordered for multi resolution decoding at 
any desired bit rate. The total number of bits belonging to a 
particular bit plane is the same for original scheme and its scalable 
version, but they are re-arranged in accordance with their spatial 
resolution dependency. 

The significant information is generated using the significant 
test function nij tw , at the bit-plane n. The sign of the 

information is generated using ijwSign . The encoding process 

progresses through the mask function jimask ,  to check whether 
the wavelet coefficient position is inside the object area or not.  
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The significant coefficients are collected during the traversing 
through the wavelet coefficients using a predefined scan path. The 
restructuring of wavelet coefficients is done by using the function 

nij twcluster ,  for neighboring coefficients around the significant 

coefficient wij and the nij twchild ,  for child coefficients of 
significant coefficient wij .  

 
  nmtwcluster nij ,, , when 

1. 11,11 jnjimi  

 

 

 

 
       (a)                     (b)         (c) 

   
       (d)                    (e)                    (f) 
Fig. 1. (a, d) original images, (b, e) generated masks 
(c, f) extracted objects 
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 The algorithm is outlined below: 
1. Initialization 
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2. Sorting pass 
If mask (i, j) = 1{  

If 0,LIP 1L nij tw   

 {If 1,LIPL nij tw  

  {coding ( ijw ,L) ;}}} 

If mask (i, j) = 1 
{If L  
 {If 0, 1nij tw   

{If nij tw ,  =1 

{coding ( ijw , L);  

nijL twclusterRGE , ; 

Do {If LGER  
{If 0),( 1nijL twRGE  

{{If ),( nijL twRGE =1  

coding ( ijw , L); 

nijL twclusterRGE , }} 
 } while (End (RGEL)!=True) ;}}}} 

Function ),( Lwcoding ij  
{  Output distance ‘d’ from previous significant.  
    Send binary representation of ‘d’ without leading MSB ‘1’.     
    Send sign information of ijw ijwSign . Add ijw  into TPSL. } 
3. Index updating pass: 

If LTPS { 

LnijL TPSjitwclusterSNS ,;,   

LnijL TPSjitwchildSPS ,;,1 } 
         LIPL=RGEL+SNSL + SPSL; 
4. Refinement Pass: 

If LLSP  
{ If 1),(wLSP 1ijL nt  

{Add nth MSB of ijL wLSP .}} 

LSPL=LSPL+TPSL.;TPSL= ; 
5. Resolution scale updates: 

Send Header Information; 
              If (L > 1) {L=L-1; Go to step 2.} 
  Else{L=Lmax; } 
6. Threshold update: 

  I f tn >1{ nn tt 1    &    2/nn tt ;Go to step 2.} 

The algorithm produces four symbols: +, -, 1, 0. These 
symbols are coded as in CM-WDR algorithm [6] in the sorting 
pass using 2 bits with 11 for +, 10 for -, 01 for 1 and 00 for 0. The 
mask is coded by noting the boundary points. The proposed 
algorithm Scalable WDR coding scheme does not require 
arithmetic coding. 
   

4. EXPERIMENTAL RESULTS 
 
The proposed scheme SWDR is compared with original SPIHT 
and its scalable version S-SPIHT with Shape adaptive DWT. The 
algorithm is simulated on 8 bpp medical images consisting of 10 
classes with 100 frames in each class and video objects like 
announcer etc. The original resolutions of the medical images are 
(512x512) pixels and video still pictures are 480x512 pixels and 
are publicly available at http:// www.cipr.rpi.edu /  resource 
/sequences / index .html. The wavelet decomposition is based on 
the bi-orthogonal 9/7 for announcer object and 5/3 tap wavelet 
filters for MRI object with symmetric extension at the image 
boundary [9, 10].  

The objects are extracted by hand, but in practice any 
segmentation algorithm appropriate for the application may be 
employed. Six levels of wavelet decomposition were first applied 
to each test image, and then the scalable WDR encoder was set to 
encode the coefficients from bitplanemax to bitpane0 supporting 
maximum spatial scalability levels as 7.  

The bit stream for each spatial resolution at different rates and 
the fidelity was measured by the peak signal to noise ratio (PSNR) 
defined as, 

 dB
MSE

PSNR
2

10
maxlog10  

where MSE is mean squared error between the original and the 
reconstructed image; max is the maximum possible magnitude of a 
pixel inside the image. All the results for SPIHT, scalable SPIHT 
(S-SPIHT) and scalable WDR (SWDR) were obtained by decoding 
the binary bit streams without using the arithmetic coding. 

The simulation results obtained by the various algorithms and 
on medical images are given in Table 1, 2. A typical reconstructed 
image at different resolution levels is shown in figure 2. For full 
resolution MRI image reconstruction, the performance gain is from 
0.34 dB to 0.71 dB for various bit rates. It is observed that the 
coding performance in PSNR values (in dB) increases when the 
resolution scale decreases. For resolution level 2, i.e. 256x256, the 
performance gains of SWDR are from 0.80 dB to 5.20 dB 
compared to the normal SPIHT and from 0.51 dB to 1.11 dB 
compared to the scalable SPIHT for various bit rates. Similar 
experimental results are obtained for the resolution level 3 
(128x128). 

The experimental results obtained for video still object in 
YUV format and PSNR values for luminance components (Y) are 
shown in the table 3, 4. For full resolution object reconstruction, 
the performance gain is from 0.79 dB to 1.34 dB for various bit 
rates. For resolution level 2, i.e. 240x256, the performance gains of 
SWDR are from 3 dB to 12 dB compared to the normal SPIHT and 
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from 1.81 dB to 3.76 dB compared to the scalable SPIHT for 
various bit. Similar experimental results are obtained for the 
resolution level 3 (120x128). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. CONCLUSION 
 
We propose a scalable WDR coding scheme with shape adaptive 
wavelet transform that supports spatial and SNR scalability. The 
flexible bit streams generated by the encoder can be decoded 
adaptively to get images at any level of spatial resolution. The 
object based coding using scalable WDR performs much better 
than the scalable SPIHT and the original SPIHT at any bit rate in 
terms of scalable properties and has lesser complexity than the 
zero tree coding technique. The new coding scheme is applied to 
the multimedia video sequences. The scalability features of new 
method have interesting perspectives for numerous visual 
communications applications.  
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Table 3: PSNR values of Announcer Object of Full 
Resolution with size (480X512) (luminance 
Component Y) 

Bit rate (bpp) 
Method 

0.125 0.25 0.5 1.0 
SPIHT 36.49 40.77 45.46 51.51 
SWDR 37.83 41.66 46.25 52.60 

        
 (a) Full resolution -1     (½)            (¼)   

     
 (a) Full resolution -1       (½)   (¼)   
Fig. 2. Scalable object reconstruction at bit rate 0.0625  

Table 1: PSNR values of MRI Object of Full 
Resolution with size (512x512)  

Bit rate (bpp) 
Method 

0.125 0.25 0.5 1.0 
SPIHT 31.21 35.84 40.35 47.11 
SWDR 31.92 36.43 40.93 47.45 

Table 4: PSNR values of Announcer Object of Half 
Resolution with size (240x256) (luminance 
Component Y) 

Bit rate (bpp) 
Method 

0.0625 0.125 0.25 0.5 
SPIHT 33.61 38.14 43.86 50.53 

S-SPIHT 34.24 39.70 46.47 58.88 
SWDR 36.64 41.51 48.57 62.64 

Table 2: PSNR values of MRI Object of Half 
Resolution with size (256x256)  

Bit rate (bpp) 
Method 

0.0625 0.125 0.25 0.5 

SPIHT 27.56 31.20 36.49 43.63 
S-SPIHT 27.76 31.49 37.03 47.72 
SWDR 28.58 32.00 38.04 48.83 
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