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Abstract— Demosaicing and compression are generally 

performed sequentially in most digital cameras. Recent reports 
show that the compression-first scheme outperforms the 
conventional demosaicing-first scheme in terms of image quality 
and complexity. In this paper, an efficient lossless compression 
scheme for Bayer images is presented. It exploits a context 
matching technique to rank the neighboring pixels for predicting 
a pixel. Besides, an adaptive color difference estimation scheme 
is also proposed to remove the spectral redundancy. Simulation 
results show that the proposed algorithm can achieve a better 
compression performance as compared with the existing lossless 
CFA image coding methods. 

Index Terms—Image Compression, Color Filter Array, Cameras 
 

I. INTRODUCTION 
Most digital cameras use a single image sensor to capture 

scene images. In these cameras, Bayer color filter array (CFA) 
[1], as shown in Fig. 1, is usually coated over a sensor to 
record only one of the three chromatic components at each 
pixel location. In general, a CFA image is first interpolated 
via a demosaicing process [2-5] to form a full color image 
and then compressed for storage. Fig. 2a shows the workflow 
of this imaging chain. 
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Fig. 1 – Bayer pattern having a red sample as its center  
 

 
Fig. 2 – Single-sensor camera imaging chain: (a) the demosaicing- 
first scheme, (b) the compression-first scheme 

 
Recently, some reports [6,7] indicated that such a 

demosaicing-first scheme was inefficient as the demosaicing 
process introduced redundancy which should eventually be 
removed in the compression step. As a result, an alternative 
approach [6,7] which carries out compression before 
demosaicing as shown in Fig. 2b has been proposed lately. 
Under this new strategy, digital camera can have a simpler 
design and lower power consumption is required as the 
computationally heavy processes like demosaicing can be 
carried out in an offline powerful personal computer. This 
motivates the demand of CFA image compression techniques. 

There are two approaches for CFA image compression: 

lossy and lossless. Lossy compression is generally referred to 
as visually lossless compression as it only discards visually 
redundant information. This approach usually yields a higher 
compression ratio as compared with the lossless approach. 
[6-8] are some examples of this approach. 

In some high-end photography applications, original CFA 
images are required for producing high quality full color 
images directly, and hence lossless compression of CFA 
images is necessary. Some grayscale image lossless 
compression methods like JPEG-LS [9] and JPEG2000 [10] 
can be used to encode a CFA image but only a fair 
performance can be attained. Recently, an advanced lossless 
CFA image compression algorithm (LCMI) [11] was 
proposed. In this algorithm, the mosaic data is de-correlated 
by the Mallat wavelet packet transform and the coefficients 
are then compressed by adaptive Rice code. 

In this paper, a simple prediction-based lossless CFA 
compression scheme is presented. It employs context 
matching technique to rank the neighboring pixels for 
predicting the current pixel. In addition, an adaptive color 
difference estimation technique is also used to remove the 
spectral redundancy. Experimental results show that the 
proposed compression method can effectively and efficiently 
reduce the redundancy in both spatial and spectral domains. 
As compared with the existing lossless CFA image coding 
algorithms, the proposed scheme provides the best 
compression performance. 

 This paper is structured as follows. In the next section, 
the proposed context matching based prediction scheme is 
presented. In Sections III and IV, the description of an 
adaptive color difference estimation technique and the 
structure of the proposed compression scheme are, 
respectively, provided. Section V demonstrates some 
simulation results and, finally, a conclusion is given in 
Section VI. 

 
II. CONTEXT MATCHING BASED PREDICTION 

The proposed prediction scheme handles the green plane 
and the non-green planes separately in a raster scan manner. It 
reorders the neighboring samples such that the one has higher 
context similarity to that of the current sample will contribute 
more to the current prediction. 

 
j-2 j-1 j j+1 j+2 j-2 j-1 j j+1 j+2  j-2 j-1 j j+1 j+2

i-2 C3 C2  C3  C4  C2 C3 C4
i-1 C2 C4       
i C1 g C1  c    C1 c

i+1       
i+2       

g(i,j) c(i,j) 
(a) (b) 

Fig. 3 – Positions of the pixels included in the candidate set of (a) a 
green sample and (b) a red/blue sample 
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Fig. 4 – The support region of (a) a green sample and (b) a red/blue 
sample 

 
Let us consider the prediction on the green plane first. 

Assume that we are now processing a particular green sample 
g(i,j) as shown in Fig 3a. The four nearest neighboring green 
samples of g(i,j) form a candidate set g(i,j)={g(i,j-2), 
g(i-1,j-1), g(i-2,j), g(i-1,j+1)}. The candidates are ranked by 
comparing their support regions (i.e. context) with that of 
sample g(i,j). The support region of a green sample at position 
(i,j), Sg(i,j), is defined as shown in Fig. 4a. In formulation, we 
have Sg(i,j)={(i,j-2), (i-1,j-1), (i-2,j), (i-1,j+1)}. The matching 
extent of the support regions of g(i,j) and g(m,n) for 
g(m,n) g(i,j) is then measured by 

)1,1()1,1(),2(),2(

)1,1()1,1()2,()2,(),()g(

  

)(

nmjinmji

nmjinmjinmgi,j

gggg

gggg,SSD
 

(1)
 

Let g(mk,nk) g(i,j) for k=1,2,3,4 be the 4 ranked 
candidates of sample g(i,j) such that )( ),()( unumgi,jg ,SSD  

)( ),()( vnvmgi,jg ,SSD  for 1 u<v 4. The value of sample g(i,j) 
can then be predicted with a prediction filter as 
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where wk for k=1,2,3,4 are weighting coefficients. In our 
study, wk‘s are obtained by quantizing the training result 
derived by linear regression with a set of training images 
covering half of the test images shown in Fig. 6. They are 
quantized to reduce the realization effort of eqn. (2). After all, 
the coefficients of the prediction filter used to obtain the 
result presented in this paper are {w1, w2, w3, w4}={5/8, 2/8, 
1/8, 0} and the predicted green sample is given by 
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As for the case when the sample being processed is a red 
or blue sample, the prediction is carried out in the color 
difference domain instead of the green color plane as before.  

Let d(p,q) be the green-red (or green-blue) color 
difference value of a non-green sample c(p,q). Its 
determination will be discussed in detail in Section III, where 
an adaptive color difference estimation method is proposed. 

For any non-green sample c(i,j), its candidate set 
becomes c(i,j)={d(i,j-2), d(i-2,j-2), d(i-2,j), d(i-2,j+2)} and its 
support region (context) is defined as Sc(i,j)={(i,j-1), (i-1,j), 
(i,j+1), (i+1,j)} as shown in Fig. 3b and Fig. 4b, respectively.  

The prediction for a non-green sample is carried out in 
color difference domain. Specifically, the predicted color 
difference value of sample c(i,j) is given by 
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where wk and d(mk,nk) are, respectively, the kth predictor 
coefficient and the kth ranked candidate in c(i,j) such that 

)()( ),()(),()( vvuu nmci,jcnmci,jc ,SSD,SSD  for 1 u<v 4, where 

),1(),1(),1(),1(

)1,()1,()1,()1,(),()c(

  

)(

nmjinmji

nmjinmjinmci,j

gggg

gggg,SSD
  

(5)
 

Again, wk are trained with the same set of training images 
used to train the predictor coefficients in eqn.(2). For the 
compression results reported in this paper, the predictor used 
for the color difference prediction is 
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In the proposed compression scheme, all green, red and 
blue pixels are encoded respectively in a raster scan manner. 
The four samples used for predicting sample g(i,j) in eqn.(2) 
are g(i,j)’s closest processed neighboring samples of the same 
color. They have the highest correlation to g(i,j) in different 
directions and hence can provide a good prediction result 
even in an edge region. A similar argument applies to explain 
why c(i,j) is used in eqn.(4) to handle blue/red samples. 

As for the support regions, no matter the concerned 
sample is green or not, as shown in Fig. 4, their supports are 
defined based on their four closest known green samples. This 
is because the green channel has a double sampling rate as 
compared with the other channels in a CFA image and hence 
provides a more reliable context for matching. In the 
proposed scheme, as green samples are encoded first in raster 
sequence, all green samples are known in the decoder and 
hence the support of a non-green sample can be non-causal 
while the support of a green sample has to be causal. This 
non-causal support tightly and completely encloses its sample 
of interest. It models image features such as intensity gradient, 
edge orientation and textures better such that more accurate 
support matching can be achieved. 

 
III. ADAPTIVE COLOR DIFFERENCE ESTIMATION 

When compressing the non-green color plane, color 
differences are exploited to remove the spectral dependency. 
Let c(m,n) be the intensity value of the available color (either 
red or blue) at a non-green sampling position (m,n). The 
green-red (green-blue) color difference of pixel (m,n), d(m,n), 
is obtained by 

),(),(ˆ),( nm-cnmgnmd  (7) 

where (m,n) represents an estimate of the missing green 
component at position (m,n). In the proposed estimation, 

(m,n) is adaptively determined according to the horizontal 
gradient H and the vertical gradient V at (m,n) as follows. 
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donate, respectively, the preliminary green estimates obtained 
by linearly interpolating the adjacent green samples 
horizontally and vertically. Note that, in eqn.(8), the missing 
green value is determined in such a way that a preliminary 
estimate contributes less if the gradient in the corresponding 
direction is larger. The weighing mechanism automatically 
directs the estimation process along an edge if there is. 

Gradients H and V are determined by averaging all 
local green gradients in the same direction within a 5×5 
window as 
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IV. PROPOSED COMPRESSION SCHEME 

Fig. 5 shows the proposed compression scheme. In the 
encoding phase, a CFA image is first divided into 2 
sub-images: a green sub-image which contains all green 
samples of a CFA image and a non-green sub-image which 
holds the rest samples. The green sub-image is coded first and 
the non-green sub-image follows based on the green 
sub-image as a reference. 

 

 
Fig. 5 – Structure of the proposed compression scheme: (a) encoder 
and (b) decoder 

 
To code a sub-image, the sub-image is raster-scanned and 

each pixel is predicted with its 4 neighboring pixels by using 
context matching based prediction (CMBP), the prediction 
scheme proposed in Section II. Its prediction error, say e(i,j), 
is given by 
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where g(i,j) is the real green sample value (if it exists) and 
d(i,j) is the color difference of pixel (i,j) estimated by the 
method described in Section III. ),(ˆ jig  and ),(ˆ jid , 
respectively, represent the predicted value of g(i,j) and the 
predicted value of d(i,j). The error residue e(i,j) is then 
mapped to a non-negative integer as follows to reshape its 
value distribution from a Laplacian one to an exponential one 
for Rice code.  
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The Rice code is employed in the proposed scheme 

because of its simplicity and its efficiency in handling 
exponentially distributed sources. In Rice code, the mapped 
residue E(i,j) is compressed by splitting it into a quotient 
Q=floor(E(i,j)/ ) and a remainder R=E(i,j)mod  with a 
positive integer =2k called Rice parameter, where k 0. The 
quotient and the remainder are then saved for storage or 
transmission. The length of the codeword used for 
representing E(i,j) is given by 

  
2log1),()|),(( jiEfloorjiEL . (12) 

Parameter  is critical to the compression performance of 
Rice code as it determines the code length of E(i,j). In the 
proposed scheme, parameter  is determined by (i,j), a local 
information index of pixel (i,j) defined as  
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where E(mk,nk) for k=1,2,3,4 are the corresponding mapped 
prediction errors of the four ranked candidates in g(i,j) (or 

c(i,j), depends on whether (i,j) is a green sample) acquired 
during CMBP. As the residue plane still contains certain 
amount of pixel correlation, applying the ranked local 
information to compute (i,j) can better model residue E(i,j) 
for the estimation of parameter . 

(i,j) can then be classified into a few of groups, and the 
corresponding parameter  for E(i,j) is determined as 

(i,j)=2
p
 ,  where }),({ arg 1 zz

z
bjibp  (14) 

In (14), bz are the boundaries of a K-class classifier C={0
b0< b1< < bK + } for z=1,2, ,K. They are determined by 
minimizing the total code length for the sub-image using 
dynamic programming, i.e. 

),(
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where  donates the set of all pixels in a sub-image. 
As it is not practical to compute bz on the fly, they are 

obtained by offline training. With the same set of training 
images mentioned in Section II, classifiers Cg={0, 1, 8, 21, 43, 
99, 251, + } and Cc={0, 1, 8, 21, 47, 118, 326, 574, + } 
were obtained and used for coding the green sub-image and 
the non-green sub-image respectively in our simulations. 

The decoding process is just the reserve process of 
encoding. The green sub-image is decoded first and then the 
non-green sub-image is decoded with the decoded green 
sub-image as a reference. The original CFA image is then 
reconstructed by combining the two sub-images. 

 
V. COMPRESSION PERFORMANCE  

Simulations were carried out to evaluate the compression 
performance of the proposed scheme. Twenty-four 24-bit 
color images of size 512×768 each as shown in Fig. 6 were 
Bayer sub-sampled to form a set of 8-bit testing CFA images. 
They were then directly coded by the proposed compression 
scheme. Some representative lossless compression algorithms 
such as JPEG-LS [9], JPEG 2000 (lossless mode) [10] and 
LCMI [11] were also evaluated for comparisons. 
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Table 1 lists the output bit-rates of the CFA images 
achieved by various algorithms. It clearly shows that the 
proposed scheme outperforms all other evaluated methods in 
all testing images. Especially for the images which contain 
many fine textures such as images 5, 7, 8, 13, 20 and 24, the 
bit-rates achieved by the proposed scheme are at least 
0.32bpp lower than the corresponding bit-rates achieved by 
LCMI, which is the method offers the second best 
compression performance. On average, the proposed scheme 
yields a bit-rate as low as 4.64bpp. It is, respectively, around 
1.26, 0.37 and 0.25 bpp lower than those achieved by 
JPEG-LS, JPEG2000 and LCCMI. 
 
Image JPEG 

-LS 
JPEG 
2000 LCMI Ours Image JPEG-

LS 
JPEG 
2000  LCMI Ours

1 6.403 5.816 5.824 5.517 13 6.747 6.372 6.503 6.181
2 6.787 5.134 4.629 4.331 14 6.289 5.555 5.487 5.191
3 5.881 4.216 3.965 3.761 15 6.317 4.656 4.396 4.092
4 6.682 4.931 4.606 4.385 16 5.289 4.552 4.521 4.417
5 6.470 5.947 5.859 5.402 17 4.965 4.547 4.499 4.291
6 5.871 5.210 5.139 4.918 18 6.184 5.570 5.538 5.323
7 5.974 4.500 4.299 3.975 19 5.470 4.909 4.898 4.777
8 6.295 5.899 5.966 5.634 20 4.317 4.026 4.054 3.550
9 5.074 4.391 4.319 4.201 21 5.467 5.039 4.983 4.830

10 5.395 4.556 4.415 4.221 22 6.188 5.218 5.060 4.873
11 5.370 4.986 4.952 4.709 23 6.828 4.525 3.960 3.856
12 5.628 4.485 4.307 4.107 24 5.719 5.223 5.257 4.915

     Avg. 5.900 5.011 4.893 4.644
Table 1 – Achieved bit-rates of various lossless compression 
algorithms in terms of bits per pixel (bpp) 

 
As a green pixel estimation method is proposed and used 

when compressing the non-green sub-image in color 
difference domain, a simulation was also carried out to 
evaluate its performance. For comparison, some other 
estimation methods such as bilinear interpolation [4] (BI), 
edge sensing interpolation [5] (ESI) and adaptive directional 
interpolation [2] (ADI) were also evaluated. To provide a 
clear demonstration, only the non-green sub-image was coded 
in this simulation. 

Table 2 reveals the average bit rates of the outputs 
achieved by various estimation algorithms. It shows that the 
proposed adaptive estimation method yields the best 
compression performance among the evaluated estimation 
methods. On average, the proposed estimation method 
achieves a bit-rate of 4.51bpp which is around 0.08 bpp lower 
than that achieved by BI. 

 
Image BI ESI  ADI  Ours Image BI ESI  ADI Ours

1 5.439 5.438 5.373 5.267 13 6.024 6.021 6.038 5.970 
2 4.373 4.369 4.373 4.327 14 5.053 5.051 5.026 4.958 
3 3.745 3.742 3.731 3.689 15 4.190 4.182 4.165 4.147 
4 4.333 4.330 4.323 4.297 16 4.322 4.320 4.301 4.204 
5 5.305 5.293 5.259 5.192 17 4.210 4.208 4.173 4.142 
6 4.875 4.873 4.826 4.731 18 5.167 5.165 5.178 5.137 
7 3.885 3.887 3.879 3.851 19 4.731 4.729 4.659 4.594 
8 5.583 5.577 5.462 5.328 20 3.717 3.713 3.693 3.684 
9 4.164 4.166 4.127 4.092 21 4.767 4.765 4.753 4.704 

10 4.174 4.174 4.145 4.091 22 4.763 4.763 4.762 4.724 
11 4.642 4.635 4.607 4.511 23 3.860 3.860 3.855 3.845 
12 4.092 4.090 4.071 3.998 24 4.806 4.804 4.793 4.694 

     Avg. 4.592 4.590 4.565 4.507
Table 2 – Achieved bit-rates (bpp) for coding non-green planes with 
the proposed coding scheme using various estimation methods to 
estimate a green sample for reference 

 
Fig. 6 – Twenty-four digital color images (Refers as image 1 to 
image 24, from top-to-bottom and left-to-right) 

 
VI. CONCLUSION 

In this paper, a lossless compression scheme for Bayer 
images is proposed. This scheme separates a CFA image into 
a green sub-image and a non-green sub-image and then 
encodes them separately with prediction coding. The 
prediction is carried out in the intensity domain for the green 
sub-image while it is carried out in the color difference 
domain for the non-green sub-image. In both cases, a context 
matching technique is used to rank the neighboring pixels of a 
pixel for predicting the existing sample value of the pixel. The 
prediction residues of the two sub-images are then separately 
encoded with Rice code adaptively. 

Experimental results show that the proposed compression 
scheme can efficiently and effectively decorrelate the data 
dependency in both spatial and color spectral domains. 
Consequently, it provides the best average compression ratio 
as compared with the latest lossless Bayer image compression 
schemes. 
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