
LOSSLESS COMPRESSION ALGORITHMS FOR POST-OPC IC LAYOUT

Allan Gu and Avideh Zakhor

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley, CA 94720, USA

ABSTRACT
An important step in today’s Integrated Circuit (IC) manu-
facturing is optical proximity correction (OPC). While OPC
increases the fidelity of pattern transfer to the wafer, it also
results in significant increase in IC layout file size. In this
paper, we develop two techniques for compressing post-OPC
layout data while remaining compliant with existing industry
standard data formats such as OASIS and GDSII. The moti-
vation for doing so is for the resulting compressed files to be
viewed and edited by any industry standard CAD tools with-
out a decoder. Our approach is to eliminate redundancies in
the representation of the geometric data by finding repeating
groups of polygons between multiple cells as well as within a
cell. We refer to the former as “inter-cell sub-cell detection”
and the later as “intra-cell sub-cell detection”. Both problems
are NP hard, and as such, we propose two sets of greedy al-
gorithms to solve them. We show the results of our proposed
inter-cell and intra-cell algorithms on actual 90nm, 130nm,
and 180nm IC layouts.
Index Terms— IC layout, compression, OPC, repeating

geometries

1. INTRODUCTION
As the semiconductor industry moves toward denser designs
with smaller feature sizes, pattern transfer from reticles to
wafers, referred to as lithography, becomes more challenging.
To correctly fabricate these circuits using current lithographic
machines, Resolution Enhancement Techniques (RET) such
as optical proximity correction (OPC) are routinely performed
on the layout. Denser circuit design plus increased usage of
RET have resulted in significant explosion of layout data vol-
ume. Specifically, The International Technology Roadmap
for Semiconductors shows that the size of a single layer of an
uncompressed fractured layout is likely to exceed 400 Giga-
bytes in 2007 [1]. In particular, OPC is a major contributor
to the expansion of layout data volume. OPC destroys hier-
archical structures in layouts, and adds vertices to polygons
causing over 10× increase in file size.
Layout data are commonly encoded using industry stan-

dard GDSII or OASIS binary file format. Both formats use the
BackusNaur Form metasyntax to express data records, which

1This work was supported jointly by SRC contract 2005-OC-460 and
DARPA contract W911NF-04-1-0304.

describes the geometries created by IC designers. For exam-
ple, a record describing a polygon contains a list of vertices
and a 2D coordinate indicating the location of the polygon
with respect to some coordinate system.
There exist compression algorithms to reduce the mask

data size in the rasterized domain for direct write lithogra-
phy systems [2, 3]. There are also algorithms which can
be adapted to compress hierarchical IC layout data. Specifi-
cally, Chen et al. [4] have investigated algorithms to compress
dummy fills in IC layouts which exhibit high degree of spatial
regularity. Veltman and Ashida have proposed a compression
technique for E-Beam writers by finding a set of polygons
with identical repetitions [5].
In this paper, we propose two compression techniques to

reduce the layout data size. Our techniques guarantee that the
resulting compressed layouts remain compliant with GDSII
and OASIS, and can be read by any CAD tool without a de-
coder. Our approach is to eliminate redundancies in the rep-
resentation of the geometric data by finding repeating groups
of polygon between multiple cells as well as within a cell.
We refer to the former as “inter-cell sub-cell detection (Inter-
SCD)” and latter as “intra-cell sub-cell detection (IntraSCD)”.
Both problems are NP hard, and as such, we propose two sets
of greedy algorithms to solve them. Section 2 describes the
problem of finding repeating groups of geometries within a
cell and between multiple cells. In Section 3, we present our
algorithms to solve these two problems. Section 4 discusses
experimental results on industrial post-OPC layout data, and
compares the performance of the proposed algorithms with
GZIP.

2. SUB-CELL DETECTION PROBLEM
FORMULATION

We begin by defining few terminologies that are used through-
out the paper. We define rectangle, trapezoid, polygon, and
placement as geometries. A placement is a reference to a cell
in the layout, and associated with a placement is a transforma-
tion. A cell is a collection of geometries, and a sub-cell is a
subset of the geometries in a cell. Two geometries are equal if
they have the same list of vertices; for placements, they need
to reference the same cell and have the same transformation.
The compression ratio (CR) is the ratio of the size of the post-
OPC OASIS file to the size of its compressed version.

II - 3571-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

2.1. Intercell sub-cell detection
In OASIS, geometries are defined each time they occur in a
cell. If a group of three geometries is in N different cells,
then there are 3N definitions of these geometries when only
3 definitions would suffice. By detecting this repeating group
of three geometries, it is possible to create a cell from them
which can then be referenced by each of the N cells with a
placement operator.
Intercell Sub-cell Detection Problem: Given m cells,

{C1, C2, ..., Cm}, find the sub-cell, (SCr), which maximizes
|SCr| ∗ r, for 2 ≤ r ≤ m.
A sub-cell SC is said to occur in a cell C if there exists a

transformation L that maps every geometry in SC to another
geometry in C. |SCr| denotes the number of geometries in
the sub-cell, and r is the number of cells that SCr occurs in.
This problem is NP hard since it is a special case of the largest
common point set (LCP) problem [6].

2.2. Intracell sub-cell detection
Representing N instances of a geometry in OASIS requires
one geometry definition and N two dimensional coordinates.
Compression is achieved by finding a sub-cell which occurs
multiple times within the cell. For instance, 4 polygons oc-
curing N times in a cell would require 4 definitions and 4N

coordinates to represent. Grouping the 4 polygons together
into a cell would only require N coordinates rather than 4N

coordinates.
Intracell Sub-cell Detection Problem: Given a cell, C,

find the sub-cell SCr which maximizes |SCr| ∗ r, for 2 ≤
r ≤ m, and the maximum Euclidean distance between any
two geometries in SCr is less than equal to dist.
We restrict the maximum Euclidean distance between two

geometries because most circuit designs are created by con-
necting smaller functional circuits together, and the smaller
circuits are limited in size. A sub-cell SC occurring in r loca-
tions implies that there exist r transformations, T1, T2, ..., Tr

such that Ti(SC) maps uniquely to a group of geometries in
C. m is the maximum number of geometries that are repeated
in C. This problem can be shown to be NP hard by a reduc-
tion from the 1-D LCP problem [7].

3. SUB-CELL DETECTION ALGORITHMS
InterSCD and IntraSCD are both NP hard problems, and can-
not be solved optimally within a reasonable time. In this sec-
tion, we describe two greedy algorithms to solve them. The
approach described in this paper only detects groups of ge-
ometries that are translational invariant, but not rotational in-
variant. We describe an extension to the IntraSCD algorithm
that addresses rotational invariance in [7]. Future research
will address rotational invariance of the InterSCD algorithm.

3.1. Intercell sub-cell detection algorithm
Before detecting a common sub-cell among a large collection
of cells, we begin by grouping cells that may have a common
group of geometries using hierarchical clustering [7]. This

way, cells that do not share any geometries with other cells
are eliminated from further consideration.
Having obtained a collection of clusters through hierar-

chical clustering, we now find the sub-cell in each cluster
which maximizes |SCr| ∗ r, where r is the number of cells
the sub-cell occurs in for that cluster, and |SCr| is the num-
ber of geometries that the sub-cell SCr contains. We start by
choosing two cells, Ci and Cj , that are closest in terms of the
distance metric described in [7]. Exhaustive search is used
to find the largest sub-cell that is common to both cells under
translation [7]. The largest common group of geometries is
taken as the initial sub-cell if the number of geometries ex-
ceeds some threshold. Otherwise, another pair of cells whose
distance is the next closest are choosen. Once an initial sub-
cell, SC, is selected, we determine the distance between SC

and the rest of the cells in the cluster according to the dis-
tance metric described in [7]. The cell that is the closest to
SC is choosen, and exhaustive search is applied again to find
the largest sub-cell SCi that is common to both SC and the
ith cell. Specifically, for the ith cell we test to see whether
|SCi| ∗ i > |SC| ∗ (i − 1), and |SCi| ≥ threshold, in order
to set SC ← SCi. Otherwise, the ith cell is removed from
the cluster and further consideration. This continues until all
of the cells within the cluster have been visited.
Figure 1 shows an example of how the above approach

works. After the hierarchical clustering step, cells A, B, C,
and D are assumed to be grouped together in a cluster. Cells
A and B are the closest with 6 geometries in common. We
then apply the exhaustive search to find the largest group of
geometries that occurs in cells A and B, and set it as the sub-
cell SC shown in Figure 1(b). Cell C and SC are the closest,
and SC2 shown in Figure 1(c) is the sub-cell with the most
number of shared geometries between cell C and SC. Finally
SC3 shown in Figure 1(d) is the sub-cell with the most num-
ber of shared geometries between SC2 and cell D. However,
SC3 is not used because |SC3| ∗ 4 = 12 which is not greater
than |SC2| ∗ 3 = 12.

3.2. Intracell sub-cell detection algorithm
We have developed a greedy algorithm that grows the sub-
cell at each iteration to solve the IntraSCD problem. The
basic idea behind the algorithm is to select an initial poly-
gon as an initial cell, and to add more polygons to the cell
until there is no additional benefit in adding more polygons.
At each step of the iteration, we choose the group of geome-
tries such that |SCi| ∗ numInsti is maximized, where |SCi|
is the number of geometries in the sub-cell at the ith iter-
ation, and numInsti is the number of instances of SCi in
the cell. The algorithm stops adding more polygons when
|SCi| ∗ numInsti ≤ |SCi−1| ∗ numInsti−1.
The algorithm starts by ranking all the geometries accord-

ing to the number of instances of the geometry in the cell.
Then the geometry,Gmax, with the most number of instances
is selected. For each instance of Gmax, all possible groups

II - 358

(a)

(b) (c) (d)

Fig. 1. Intercell sub-cell detection example. (a) Cell cluster;
(b) sub-cell of cell A, B; (c) sub-cell of SC, cell C; (d) sub-cell
of SC2 and cell D

of 2 or 3 geometries are created using Gmax and its neigh-
bors [7]. We select the most frequently occuring group of
2 or 3 geometries, SC, provided the number of instances of
that group is greater than some threshold. Additional geome-
tries are added to the group in order to determine whether it
is worthwhile to expand its size. We consider SC as a sin-
gle entity, and apply the same iteration step described above.
The algorithm stops adding more polygons on the ith itera-
tion if |SCi| ∗ numInsti ≤ |SCi−1| ∗ numInsti−1. Once
the iteration has ended, a new cell containing the geometries
of SCi−1 is created and placements at all the locations in the
cell that SCi−1 occurs at are created. The above process is
repeated until all of the geometries have been visited.

Figure 2 shows an example of running the IntraSCD algo-
rithm on a cell with 31 different geometries. Initially in Fig-
ure 2(a), we select the polygon with 5 instances called SC0

and examine all its possible combinations of 2 and 3 geome-
tries. Figure 2(b) shows the group of three polygons that have
the most benefit among all the combinations after the 1st it-
eration. Since |SC0| ∗ numInst0 < |SC1| ∗ numInst1,
we continue the iteration. At the end of the 2nd iteration,
another polygon is added to SC1 resulting in a group of 4
polygons as shown in the top sub-cell in Figure 2(c) which
we call SC2. Figure 2(c) also shows two other groups of ge-
ometries considered in the second iteration. However, these
groups only occur once in the cell and are not selected. SC2

with 4 geometries appearing on the top of Figure 2(c) is se-
lected because it is the one that maximizes |SC| ∗ numInst.
The iteration continues since (|SC2| ∗ numInst2 = 16) >

(|SC1| ∗ numInst1 = 12). On the third iteration, the al-
gorithm attempts to add more geometries to SC2. However
(|SC3| ∗ numInst3 = 7) < 16, and therefore the process
stops. Figure 2(d) shows the result at the end of the itera-
tions, where the resulting sub-cell has replaced the repeating
geometries in the cell.

(a) (b)

(c) (d)

Fig. 2. Intracell sub-cell detection example. (a) 0th iteration;
(b) 1st iteration; (c) 2nd iteration; (d) result

Table 1. InterSCD compression ratio. File sizes are in bytes.
Post-OPC Size InterSCD Size CR

Poly (L1) 6,391,097 2,793,277 2.288
Active (L1) 3,496,377 1,777,757 1.967

4. RESULTS
We apply the above InterSCD and IntraSCD algorithms on
actual industrial post-OPC layouts. The first data set consists
of the Poly and Active layers for a 3.5mm× 3.5mm chip with
180nm feature size. The OPC is done by the layout owner
with industry standard OPC software. The second data set
consists of the Poly, Metal 1, and Metal 2 layers from a 8mm
× 8mm and 4.3mm × 4.3mm chips with 130nm feature size.
The third data set consists of the Poly, and Active layers from
a 1.4mm × 1.4mm and 1.8mm × 1.8mm chips with 90nm
feature size. We performed OPC correction on the second
and third data sets with standard recipes using a different OPC
software from another major vendor.
We have found that for the 1st data set the InterSCDworks

well, while applying IntraSCD does not result in noticeable
gain. We notice that many of the post-OPC cells from the
first layout data set are much smaller than those from the sec-
ond and third data sets. Therefore, IntraSCD, which detects
similar groups of polygons within a cell, does not result in
much gain on the first layout data set with small cells. Table 1
shows the InterSCD compressed file sizes in bytes encoded
in OASIS format for the first data set. As shown, the average
compression ratio is around 2X for the two layers.
Similarly, IntraSCD works well on the 2nd and 3rd data

sets, while InterSCD results in little gain. Table 2 shows the
results of applying IntraSCD on the second and third layout
data sets. The compression ratio ranges from 1.80 to 2.46

II - 359

Table 2. IntraSCD compression ratio. File sizes are in bytes.
Post-OPC Size IntraSCD Size CR

Poly (L2a) 2,413,460 977,294 2.469
Poly (L2b) 1,036,664 576,491 1.798
Poly (L3a) 9,189,288 4,905,897 1.873
Poly (L3b) 34,515,762 18,960,928 1.820
Metal 1 (L2a) 2,490,423 1,791,495 1.390
Metal 1 (L2b) 1,194,192 1,060,746 1.126
Metal 2 (L2a) 1,444,367 1,143,360 1.263
Metal 2 (L2b) 947,981 775,561 1.222
Active (L3a) 9,666,584 6,899,025 1.401
Active (L3b) 35,945,586 23,209,262 1.549

Table 3. Comparing the CR of GZIP to InterSCD.
GZIP InterSCD InterSCD+GZIP
CR CR CR

Poly (L1) 7.789 2.288 8.987
Active (L1) 8.603 1.967 9.150

for the Poly layers, and 1.40 to 1.55 for the Active layers.
However, the compression ratio for the Metal layers is rather
low and in the range of 1.12 to 1.39. The Metal layers contain
many polygons with only a few instances. Naturally, if a poly-
gon, P , has few instances, then there are only few instances
of a group of polygons containing P .
GZIP [8], a popular lossless compression software, is com-

monly used to compress GDSII and OASIS layout files. Ta-
ble 3 compares the compression ratios of GZIP and InterSCD.
As seen in the 2nd column of Table 3, GZIP performs well,
achieving a compression ratio of 8.6 for Active (L1). The
compression ratio of InterSCD shown in the 3rd column of
Table 3 is lower than that of GZIP. This is expected since In-
terSCD compressed files are OASIS format compliant, and as
such, do not employ any entropy coding techniques. How-
ever, as shown in the 4th column of Table 3, InterSCD files
can be further compressed by applying GZIP to them for situ-
ations in which OASIS compliancy is not important. As seen
in the 4th column of Table 3, the compression ratio of Inter-
SCD follow by GZIP is higher than GZIP by itself.
GZIP also performs better than IntraSCD for layouts with

larger cells. However, as seen in the 2nd and 3rd columns
of Table 4, the compression ratio of IntraSCD is much closer
to the compression ratio of GZIP for larger post-OPC layout
file sizes such as Active(L3b) and Poly(L3a). Specfically, for
the largest layouts i.e. Layout 3b, the compression ratios are
1.55 and 1.77 for the Active layer, and 1.82 and 2.34 for the
Poly layer for IntraSCD and GZIP respectively. Similar to
InterSCD, IntraSCD compressesed files can be further pro-
cessed by GZIP to achieve better compression at expense of
not being OASIS compliant. As expected, Column 4 of Ta-
ble 4 shows the compression ratio of IntraSCD followed by
GZIP is higher than GZIP for all of the layouts, with the im-
provements ranging from 42% to 76% for Layouts 3a and 3b.

Table 4. Comparing the CR of GZIP to IntraSCD.
GZIP IntraSCD IntraSCD+GZIP
CR CR CR

Poly (L2a) 4.972 2.470 6.187
Poly (L2b) 3.875 1.798 4.267
Poly (L3a) 2.531 1.873 4.447
Poly (L3b) 2.366 1.820 4.179
Metal 1 (L2a) 3.003 1.390 3.786
Metal 1 (L2b) 2.764 1.126 2.898
Metal 2 (L2a) 2.96 1.263 3.110
Metal 2 (L2b) 2.911 1.222 3.043
Active (L3a) 1.875 1.401 2.677
Active (L3b) 1.768 1.549 2.866

5. CONCLUSION AND FUTUREWORK
We have presented two lossless compression algorithms called
InterSCD and IntraSCD for post-OPC IC layout data. In addi-
tion to being lossless, the resulting compressed files are fully
compliant with industry format i.e. OASIS, which means they
can be viewed by any CAD editing tool without a decoder.
The algorithms find redundancies in terms of repeating ge-
ometries within a cell and between cells. We have extended
the IntraSCD algorithm in [7] to include rotational and re-
flectional invariance resulting in 5 to 6 percent increase in
compression ratio for Layouts 3a and 3b. In addition, In-
traSCD algorithm can also be used to rediscover hierarchy
in flattened layout [7]. Future work involves applying the al-
gorithms on larger layouts, and extending InterSCD to handle
rotations and reflections.

6. REFERENCES

[1] “ITRS 2005 Edition, Lithography,” Available at
http://www.itrs.net/Common/2005ITRS/Litho2005.pdf.

[2] V. Dai and A. Zakhor, “Lossless compression of VLSI layout
image data,” IEEE Trans. on Image Processing, vol. 15, no. 9,
pp. 2522–2530, 2006.

[3] H. Liu, V. Dai, A. Zakhor, and B. Nikolic, “Reduced complex-
ity compression algorithms for direct-write maskless lithogra-
phy systems,” in Proceedings of SPIE, Vol. 6151, Emerging
Lithographic Technologies X, 2006, pp. 632–645.

[4] Y. Chen, A. Kahng, G. Robins, A. Zelikovsky, and Y. Zheng,
“Compressible area fill synthesis.,” IEEE Trans. on CAD of In-
tegrated Circuits and Systems, vol. 24, pp. 1169–1187, 2005.

[5] R. Veltman and I. Ashida, “Geometrical library recognition for
mask data compression,” in Proceedings of SPIE - Vol. 2793,
Photomask and X-Ray Mask Technology III, 1996, pp. 418–426.

[6] T. Akutsu and M. M. Halldorsson, “On the approximation of
largest common subtrees and largest common point sets,” in
Proceedings of the 5th International Symposium on Algorithms
and Computation, 1994.

[7] A. Gu and A. Zakhor, “Lossless compression algorithm for hi-
erarchical IC layout data,” in Proceedings of SPIE - Vol. 6520,
Optical Lithography XX, 2007, pp. 652017–1 – 652017–17,
http://www-video.eecs.berkeley.edu/papers/agu/spie 2007.pdf.

[8] P. Deutsch, “Gzip file format specification,” RFC 1952, May
1996.

II - 360

