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ABSTRACT

A new method for lossy compression of bilevel images based

on Markov random fields (MRFs) is proposed. It preserves

key structural information about the image, and then recon-

structs the smoothest image that is consistent with this in-

formation. The smoother the original image, the lower the

required bit rate, and conversely, the lower the bit rate, the

smoother the approximation provided by the decoded image.

The main idea is that as long as the key structural information

is preserved, then any smooth contours consistent with this

information will provide an acceptable reconstructed image.

The use of MRFs in the decoding stage is the key to effi-

cient compression. Experimental results demonstrate that the

new technique outperforms existing lossy compression tech-

niques, and provides substantially lower rates than lossless

techniques (JBIG) with little loss in perceived image quality.

Index Terms— Rate-distortion, structural coherence.

1. INTRODUCTION
Compression of bilevel images is important by itself, and also

for coding of segment information in object-based coding (e.g.,

MPEG-4 [1]) and second generation image coding techniques

[2]. However, it is well-established in the literature that the bit

rate required for contour coding is quite high, and accounts

for a significant percentage of the overall bit rate of such tech-

niques. The JBIG standard (c.f. [3]) provides an efficient solu-

tion to the lossless bilevel compression problem for a variety

of image types that include text, graphs, binary objects of var-

ious shapes, and even some halftoning techniques. However,

the resulting bit rates are still relatively high, and there is a

need for lossy techniques that provide high fidelity approxi-

mations of the bilevel images without substantial perceptual

losses. The recently proposed JBIG2 standard [4] aims to pro-

vide much higher compression ratios with almost no degrada-

tion in image quality. In JBIG2, the bilevel image is typi-

cally divided into regions (text, graphs, halftones), and each

region is encoded with a different scheme. The first stage of

the standard deals with bilevel images of text and halftones.

In addition, there is a substantial literature on lossy compres-

sion techniques for coding object contours (e.g., for MPEG-

4 [5], [6]). The applicability of such techniques is somewhat

limited, however, because they assume well-defined binary

objects. A number of other lossy techniques have been pro-

posed in the literature (c.f. [7,8]), but their rate-distortion per-

formance is not as competitive. In this paper, we propose

a new scheme for lossy coding of bilevel images that uses

Markov random fields (MRFs) to reconstruct the smoothest

image that is consistent with key structural information that

can be encoded in an efficient manner. See Fig. 2 for exam-

ples of images to be considered.

The goal of lossy bilevel image compression is to provide

a balance between bit rate and reconstructed image quality.

We measure image quality by the fraction of pixels changed

by encoding/decoding, which we call the error rate. (For
bilevel images, this is equivalent to mean squared error.) The

main idea of the proposed approach is that as long as the main

structural information in the image is preserved, the details of

the reconstructed image have very little effect on perceived

quality. Thus, our goal is to reconstruct the smoothest im-

age that is consistent with the transmitted structural informa-

tion. For the encoding of the structural information we divide

the image into blocks, and losslessly encode the pixels on the

block boundaries. We then use MRF properties to reconstruct

the smoothest bilevel image that is consistent with this speci-

fication. We consider a fixed block size for the specification,

but the proposed method can be easily extended to a quadtree

approach that adjusts the block size to local image detail.

The theory of Markov random fields [9,10] has been used

extensively in image processing, especially in segmentation,

texture analysis and synthesis, restoration, and other applica-

tions, including image compression [11]. One of the attractive

properties of MRFs is their ability to impose some degree of

structural coherence (spatial continuity constraints) to an im-

age or image region. While the use of MRFs in image com-

pression is not new, the proposed approach is unique in using

MRFs solely for image reconstruction in the decoder.

In the remainder of this paper, Section 2 provides an over-

view of the encoding system and details of the encoder; Sec-

tion 3 describes the MRF model we use; Section 4 describes

the reconstruction algorithm used at the decoder, and Section

6 discusses results and conclusions.

2. SYSTEM OVERVIEW

In the proposed compression system, the encoder losslessly

encodes a prespecified subset of the image pixels, and the de-
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(a) (b)

Fig. 1. (a) Detail of specification usingN = 8 grid. The inte-
rior pixels of each block are shown in gray. (b) The nodes and

edges between nodes of a 5 × 5 block whose boundary con-
tains one run of consecutive 1s, with endpoints on different

sides. Interior pixels are shown in gray.

coder performs (primarily) maximum a posteriori (MAP) re-

construction of the remaining pixels (given the encoded sub-

set) with respect to a Markov random field model.

For the encoding, we fix a block sizeN , typically ranging

from 2 to 16, and losslessly encode the pixels in an N × N

square grid. That is, we losslessly encode only those pixels in

rows 1,N+1, 2N+1, . . ., or in columns 1,N+1, 2N+1, . . ..
We also losslessly encode the right column and bottom row,

if they were not already encoded. Figure 1 shows a portion of

the pixels in an N = 8 grid.
There are many potential ways to losslessly encode the

pixels in the grid. For example, they might be arranged into a

sequence for arithmetic or runlength coding. However, in this

paper, as a simple demonstration of the potential of the new

method, we estimate encoded bit rate by computing the em-

pirical conditional entropy H(X2|X1) of a grid pixel given
a horizontally or vertically adjacent pixel, which is an accu-

rate estimate for arithmetic coding based on first-order con-

ditional probabilities. Higher-order conditioning would work

even better.

As discussed later, the MRF model will be such that the

interior of each grid block can be MAP reconstructed based

only on the boundary of that particular block. Simple rules

for MAP reconstruction are discussed in Section 4.

3. MARKOV RANDOM FIELD MODEL
Recall that an MRF is specified by a graphG = (V, E) and a
collection of clique potential functionsΨc(x). Here V is a set
of nodes – in our case the pixel locations of the image – and
E is a set of pairs of nodes. The members ofE are considered

to be (undirected) edges of the graph. Moreover, E defines a
neighborhood relation between nodes, in the sense that two
nodes are neighbors if and only if they are connected by an

edge. A clique c is a subset of nodes in V such that all pairs

of nodes in c are neighbors, i.e. are connected by an edge. Let

C denote the collection of all cliques in G. Now consider a

bilevel image x that assigns a zero (white) or one (black) to

each pixel location in V . For each c ∈ C, a clique potential

function Ψc(x) assigns a value to x that depends only the

pixel values of x in the locations specified by c. Now, for

this MRF model, the probability of realization x is given by

p(x) = 1

z
exp

{
−

∑
c∈C

Ψc(x)
}
, where z is a normalizing

constant. MRFs have the key property that the probability of

a realization over a subset of nodes, given a realization over

the neighbors of the nodes, is independent of the realization

on the rest of the nodes.

We choose the MRF model to have edges that connect

horizontally, vertically and diagonally adjacent nodes. Ac-

cordingly, the cliques are singletons, pairs of adjacent nodes,

triples of adjacent nodes forming a right triangle, and quadru-

ples forming a square. For cliques consisting of a single pair

of nodes, the potential function assigns -1 if the nodes have

the same value under x, and assigns +1 if they have different

values. For cliques consisting of one, three or four nodes, the

potential function always assigns 0. Under this model, ho-

mogeneous regions and continuous contours are favored over

noisy regions and discontinuous contours.

4. DECODING/RECONSTRUCTION
The decoder begins by losslessly decoding the encoded grid.

Then it visits each block in raster order and computes (pri-

marily) a MAP estimate of its interior given the values on its

boundary. Note that under the assumed MRF model, the inte-

rior of a block can be reconstructed using only the pixels on

the boundary of that block. Moreover, the conditional prob-

ability of a block decreases monotonically with the number

of pairs of adjacent nodes in the block having different val-

ues, which we call dissimilar pairs. Therefore, a block has

maximum probability given the boundary if and only if it has

fewest dissimilar pairs.

There are several cases to consider. First, if the boundary

consists entirely of 0s (respectively 1s), then it is easy to see

that the MAP reconstruction is entirely 0s (respectively 1’s).

Second, suppose the boundary contains one run of con-

secutive 1s, and all other boundary pixels are 0. Denote the

first and last pixels of the run by P1 and P2. If P1 and P2

are on the same side of the block, then it is easy to see that

the MAP reconstruction fills the interior with all 1’s or all 0’s,

depending on which is more prevalent on the boundary. If P1

and P2 are on different sides, as illustrated in Fig. 1, then it

is easy to show that a MAP reconstruction is determined by a

path of pixels from P1 to P2 through the interior of the block.
(A path is a sequence of distinct neighboring pixels.) The

pixels on the path, and those between the path and the run of

1s on the boundary, are reconstructed as 1; all others as 0. It

can be shown that if the vertical distance between P1 and P2

exceeds the horizontal distance, then a path is optimal, i.e.,

it determines a MAP reconstruction, if and only if it consists

entirely of vertical and diagonal steps in the direction of P2.

A similar rule applies when the horizontal distance exceeds

the vertical distance. It is now evident that there are usually a

number of MAP reconstructions. In the results in Sec. 6, we

select one at random.

II - 374



Third, if the boundary contains two runs of 1s separated

by zeros, then it can be shown that the MAP reconstruction is

obtained by selecting two paths, each connecting a pair of run

endpoints, and filling in the remaining pixels in the natural

way. There are two potentially optimal ways of pairing end-

points. For any given pairing, a path is optimal if and only if it

satisfies the condition in the second case above. Each way of

pairing run endpoints can be considered and the one creating

a block with fewest dissimilar pairs is selected.

Finally, when the boundary contains three or more runs of

1s, true MAP reconstruction becomes much more complex,

especially when N is not small. However, since this does

not happen very often, we simply use the ad hoc approach

of choosing the two longest runs of 1s on the boundary, and

reconstructing the interior as described in the previous para-

graph, as if all other pixels on the boundary were 0.

5. ENCODINGWITH A DECISION BIT
As will be evident in Sec. 6, when a block has two runs of 0’s

and 1’s on its boundary, the MAP reconstruction sometimes

chooses an unfortunate pair of paths. For this reason, we have

found it useful to modify the encoding algorithm so that when

there are two runs on the boundary, both ways of pairing run

end points are tried, and one bit is used to indicate that which

creates the reconstruction that best matches the original. A

similar strategy is used when there are three or more runs on

the boundary. It will be seen that this results in a significant

increase in reconstruction quality for a small increase in bit

rate.

6. RESULTS AND DISCUSSION
To test the proposed method, we ran it on two sets of bilevel

images, each set representing a scene with three different lev-

els of smoothness. We used the adaptive clustering algorithm

of [12] on two original grayscale images to generate bilevel

images with different degrees of smoothness by controlling

the algorithm parameters. This way we can control for image

content and evaluate the response of our system to varying

degrees of smoothness. The roughest and smoothest of each

set of three are shown in Fig. 2. All images are 512x512.

In addition, we tested the lossy bilevel coding scheme of

Culik and Valenta [7,8] on the same images, as well as a lossy

coder consisting of a morphological (median-type) smoothing

filter followed by lossless JBIG compression.

Figure 3 shows error rate vs. bit rate for each of the six test

images and the various encoding methods. For our methods

the different points in each curve were obtained by choosing

block sizes 16, 14, 12, 10, 8, 6, 4, 2, 1, which have decreas-

ing error rate and increasing bit rate. For the Culik-Valenta

method, the points were obtained by varying their quality fac-

tor. For the smoothing plus JBIG the points were obtained

by varying the window size of a morphological filter. Each

plot also includes the rate of lossless coding with our method

(N = 1) and with JBIG.

We see from these plots that the decision-bitMRF method

is significantly better than both the basic MRF method and

the Culik-Valenta method, with larger improvements at lower

rates. We also see that it is much better than the JBIG smooth-

ing method, except at very low error rates. For instance, at

zero error-rate, JBIG is better than our N = 1 lossless coder,
which is to be expected, since it is overly simplistic.

Figure 4 shows, again, the leftmost image of Fig. 2, as

well as the results of encoding/decoding with, respectively,

the basic method of Sections 2 and 4 (N = 8), the decision-
bit method of Sec. 5 (N = 8), and the method of Culik-
Valenta at a similar error rate. Note that the basic method has

turned some thin black lines into dotted lines (for example in

the shirt collar and the lines above the head), and the eyes

have been largely filled in with black. This is due to the MAP

reconstruction of blocks whose boundaries have two or more

runs of 1s. The reconstruction in the decision-bit method does

not suffer from this. We conclude that the benefits of the

decision-bit method in preserving the structural integrity of

the image are larger than what onemight expect from the error

rate improvements shown in Fig. 3. In comparison, the Culik-

Valenta method tends to produce reconstructions with rough

contours and unnaturally sharp angles. In summary, we have

observed that the decision-bit MRF method generally pro-

duces reconstructed images that preserve structure and overall

quality at favorable bit rates.
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Fig. 2. The roughest and smoothest version of each test image.
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Fig. 3. Error rate vs. bit rate for the various encoding methods and three versions of the two test images. The decoded images
corresponding to the circled points are shown in Fig. 4.

(a) (b) (c) (d)

Fig. 4. (a) The leftmost image of Fig. 2. Its reproduction after being coded/decoded with (b) the basic method (N = 8), (c) the
decision-bit method (N = 8), and (d) the Culik-Valenta method at a similar error rate.
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